000902774 001__ 902774
000902774 005__ 20220103172056.0
000902774 0247_ $$2doi$$a10.1103/PhysRevB.104.184422
000902774 0247_ $$2ISSN$$a1098-0121
000902774 0247_ $$2ISSN$$a2469-9977
000902774 0247_ $$2ISSN$$a0163-1829
000902774 0247_ $$2ISSN$$a0556-2805
000902774 0247_ $$2ISSN$$a1095-3795
000902774 0247_ $$2ISSN$$a1538-4489
000902774 0247_ $$2ISSN$$a1550-235X
000902774 0247_ $$2ISSN$$a2469-9950
000902774 0247_ $$2ISSN$$a2469-9969
000902774 0247_ $$2Handle$$a2128/29155
000902774 0247_ $$2altmetric$$aaltmetric:117153754
000902774 0247_ $$2WOS$$aWOS:000720929400002
000902774 037__ $$aFZJ-2021-04545
000902774 082__ $$a530
000902774 1001_ $$0P:(DE-Juel1)184680$$aBotzung, T.$$b0$$ufzj
000902774 245__ $$aEngineered dissipation induced entanglement transition in quantum spin chains: From logarithmic growth to area law
000902774 260__ $$aWoodbury, NY$$bInst.$$c2021
000902774 3367_ $$2DRIVER$$aarticle
000902774 3367_ $$2DataCite$$aOutput Types/Journal article
000902774 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1637849628_22715
000902774 3367_ $$2BibTeX$$aARTICLE
000902774 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902774 3367_ $$00$$2EndNote$$aJournal Article
000902774 520__ $$aRecent theoretical work has shown that the competition between coherent unitary dynamics and stochastic measurements, performed by the environment, along wave function trajectories can give rise to transitions in the entanglement scaling. In this work, complementary to these previous studies, we analyze a situation where the role of Hamiltonian and dissipative dynamics is reversed. We consider an engineered dissipation, which stabilizes an entangled phase of a quantum spin−12 chain, while competing single-particle or interacting Hamiltonian dynamics induce a disentangled phase. Focusing on the single-particle unitary dynamics, we find that the system undergoes an entanglement transition from a logarithmic growth with system size to an area law when the competition ratio between the unitary evolution and the nonunitary dynamics increases. We evidence that the transition manifests itself in state-dependent observables at a finite competition ratio for Hamiltonian and measurement dynamics. On the other hand, it is absent in trajectory-averaged steady-state dynamics, governed by a Lindblad master equation: although purely dissipative dynamics stabilizes an entangled state, for any nonvanishing Hamiltonian contribution the system ends up irremediably in a disordered phase. In addition, a single trajectory analysis reveals that the distribution of the entanglement entropy constitutes an efficient indicator of the transition. Complementarily, we explore the competition of the dissipation with coherent dynamics generated by an interacting Hamiltonian, and demonstrate that the entanglement transition also occurs in this second model. Our results suggest that this type of transition takes place for a broader class of Hamiltonians, underlining its robustness in monitored open quantum many-body systems.
000902774 536__ $$0G:(DE-HGF)POF4-5224$$a5224 - Quantum Networking (POF4-522)$$cPOF4-522$$fPOF IV$$x0
000902774 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902774 7001_ $$0P:(DE-HGF)0$$aDiehl, S.$$b1
000902774 7001_ $$0P:(DE-Juel1)179396$$aMüller, M.$$b2$$eCorresponding author
000902774 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.104.184422$$gVol. 104, no. 18, p. 184422$$n18$$p184422$$tPhysical review / B$$v104$$x1098-0121$$y2021
000902774 8564_ $$uhttps://juser.fz-juelich.de/record/902774/files/PhysRevB.104.184422.pdf$$yOpenAccess
000902774 909CO $$ooai:juser.fz-juelich.de:902774$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000902774 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184680$$aForschungszentrum Jülich$$b0$$kFZJ
000902774 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179396$$aForschungszentrum Jülich$$b2$$kFZJ
000902774 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5224$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
000902774 9141_ $$y2021
000902774 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-05-04
000902774 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000902774 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-05-04
000902774 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-05-04
000902774 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000902774 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2019$$d2021-05-04
000902774 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000902774 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-05-04
000902774 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-05-04
000902774 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902774 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-05-04
000902774 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-05-04
000902774 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-05-04
000902774 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-05-04
000902774 920__ $$lyes
000902774 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
000902774 980__ $$ajournal
000902774 980__ $$aVDB
000902774 980__ $$aUNRESTRICTED
000902774 980__ $$aI:(DE-Juel1)PGI-2-20110106
000902774 9801_ $$aFullTexts