000902775 001__ 902775
000902775 005__ 20220131120359.0
000902775 0247_ $$2doi$$a10.1103/PhysRevLett.125.240601
000902775 0247_ $$2ISSN$$a0031-9007
000902775 0247_ $$2ISSN$$a1079-7114
000902775 0247_ $$2ISSN$$a1092-0145
000902775 0247_ $$2Handle$$a2128/29157
000902775 0247_ $$2altmetric$$aaltmetric:83664354
000902775 0247_ $$2pmid$$a33412044
000902775 0247_ $$2WOS$$aWOS:000596461100004
000902775 037__ $$aFZJ-2021-04546
000902775 082__ $$a530
000902775 1001_ $$00000-0003-4034-5786$$aJulià-Farré, Sergi$$b0
000902775 245__ $$aSelf-Trapped Polarons and Topological Defects in a Topological Mott Insulator
000902775 260__ $$aCollege Park, Md.$$bAPS$$c2020
000902775 3367_ $$2DRIVER$$aarticle
000902775 3367_ $$2DataCite$$aOutput Types/Journal article
000902775 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1637850321_14846
000902775 3367_ $$2BibTeX$$aARTICLE
000902775 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902775 3367_ $$00$$2EndNote$$aJournal Article
000902775 520__ $$aMany-body interactions in topological quantum systems can give rise to new phases of matter, which simultaneously exhibit both rich spatial features and topological properties. In this work, we consider spinless fermions on a checkerboard lattice with nearest and next-to-nearest neighbor interactions. We calculate the phase diagram at half filling, which presents, in particular, an interaction-induced quantum anomalous Hall phase. We study the system at incommensurate fillings using an unrestricted Hartree-Fock ansatz and report a rich zoo of solutions such as self-trapped polarons and domain walls above an interaction-induced topological insulator. We find that, as a consequence of the interplay between the interaction-induced topology and topological defects, these domain walls separate two phases with opposite topological invariants and host topologically protected chiral edge states. Finally, we discuss experimental prospects to observe these novel phenomena in a quantum simulator based on laser-dressed Rydberg atoms in an optical lattice.
000902775 536__ $$0G:(DE-HGF)POF4-5224$$a5224 - Quantum Networking (POF4-522)$$cPOF4-522$$fPOF IV$$x0
000902775 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902775 7001_ $$0P:(DE-Juel1)179396$$aMüller, Markus$$b1$$eCorresponding author
000902775 7001_ $$00000-0002-0210-7800$$aLewenstein, Maciej$$b2
000902775 7001_ $$00000-0003-4996-2561$$aDauphin, Alexandre$$b3
000902775 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.125.240601$$gVol. 125, no. 24, p. 240601$$n24$$p240601$$tPhysical review letters$$v125$$x0031-9007$$y2020
000902775 8564_ $$uhttps://juser.fz-juelich.de/record/902775/files/PhysRevLett.125.240601.pdf$$yOpenAccess
000902775 909CO $$ooai:juser.fz-juelich.de:902775$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000902775 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179396$$aForschungszentrum Jülich$$b1$$kFZJ
000902775 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5224$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
000902775 9141_ $$y2021
000902775 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000902775 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000902775 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-02-02
000902775 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-02
000902775 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000902775 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000902775 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-02
000902775 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000902775 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000902775 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902775 915__ $$0StatID:(DE-HGF)0571$$2StatID$$aDBCoverage$$bSCOAP3 sponsored Journal$$d2021-02-02
000902775 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV LETT : 2019$$d2021-02-02
000902775 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000902775 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPHYS REV LETT : 2019$$d2021-02-02
000902775 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-02$$wger
000902775 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000902775 920__ $$lyes
000902775 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
000902775 980__ $$ajournal
000902775 980__ $$aVDB
000902775 980__ $$aUNRESTRICTED
000902775 980__ $$aI:(DE-Juel1)PGI-2-20110106
000902775 9801_ $$aFullTexts