001     902775
005     20220131120359.0
024 7 _ |a 10.1103/PhysRevLett.125.240601
|2 doi
024 7 _ |a 0031-9007
|2 ISSN
024 7 _ |a 1079-7114
|2 ISSN
024 7 _ |a 1092-0145
|2 ISSN
024 7 _ |a 2128/29157
|2 Handle
024 7 _ |a altmetric:83664354
|2 altmetric
024 7 _ |a 33412044
|2 pmid
024 7 _ |a WOS:000596461100004
|2 WOS
037 _ _ |a FZJ-2021-04546
082 _ _ |a 530
100 1 _ |a Julià-Farré, Sergi
|0 0000-0003-4034-5786
|b 0
245 _ _ |a Self-Trapped Polarons and Topological Defects in a Topological Mott Insulator
260 _ _ |a College Park, Md.
|c 2020
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1637850321_14846
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Many-body interactions in topological quantum systems can give rise to new phases of matter, which simultaneously exhibit both rich spatial features and topological properties. In this work, we consider spinless fermions on a checkerboard lattice with nearest and next-to-nearest neighbor interactions. We calculate the phase diagram at half filling, which presents, in particular, an interaction-induced quantum anomalous Hall phase. We study the system at incommensurate fillings using an unrestricted Hartree-Fock ansatz and report a rich zoo of solutions such as self-trapped polarons and domain walls above an interaction-induced topological insulator. We find that, as a consequence of the interplay between the interaction-induced topology and topological defects, these domain walls separate two phases with opposite topological invariants and host topologically protected chiral edge states. Finally, we discuss experimental prospects to observe these novel phenomena in a quantum simulator based on laser-dressed Rydberg atoms in an optical lattice.
536 _ _ |a 5224 - Quantum Networking (POF4-522)
|0 G:(DE-HGF)POF4-5224
|c POF4-522
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Müller, Markus
|0 P:(DE-Juel1)179396
|b 1
|e Corresponding author
700 1 _ |a Lewenstein, Maciej
|0 0000-0002-0210-7800
|b 2
700 1 _ |a Dauphin, Alexandre
|0 0000-0003-4996-2561
|b 3
773 _ _ |a 10.1103/PhysRevLett.125.240601
|g Vol. 125, no. 24, p. 240601
|0 PERI:(DE-600)1472655-5
|n 24
|p 240601
|t Physical review letters
|v 125
|y 2020
|x 0031-9007
856 4 _ |u https://juser.fz-juelich.de/record/902775/files/PhysRevLett.125.240601.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:902775
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)179396
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5224
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-02-02
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-02-02
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-02-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-02
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0571
|2 StatID
|b SCOAP3 sponsored Journal
|d 2021-02-02
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV LETT : 2019
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-02
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b PHYS REV LETT : 2019
|d 2021-02-02
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-02-02
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-02
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-2-20110106
|k PGI-2
|l Theoretische Nanoelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-2-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21