000902776 001__ 902776
000902776 005__ 20240507205537.0
000902776 0247_ $$2doi$$a10.1103/PRXQuantum.2.020304
000902776 0247_ $$2Handle$$a2128/29150
000902776 0247_ $$2altmetric$$aaltmetric:103527079
000902776 0247_ $$2WOS$$aWOS:000674698700001
000902776 037__ $$aFZJ-2021-04547
000902776 082__ $$a530
000902776 1001_ $$00000-0002-0034-8846$$aRodriguez-Blanco, Andrea$$b0
000902776 245__ $$aEfficient and Robust Certification of Genuine Multipartite Entanglement in Noisy Quantum Error Correction Circuits
000902776 260__ $$aCollege Park, MD$$bAmerican Physical Society$$c2021
000902776 3367_ $$2DRIVER$$aarticle
000902776 3367_ $$2DataCite$$aOutput Types/Journal article
000902776 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1715083040_1367
000902776 3367_ $$2BibTeX$$aARTICLE
000902776 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902776 3367_ $$00$$2EndNote$$aJournal Article
000902776 520__ $$aEnsuring the correct functioning of quantum error correction (QEC) circuits is crucial to achieve fault tolerance in realistic quantum processors subjected to noise. The first checkpoint for a fully operational QEC circuit is to create genuine multipartite entanglement (GME) across all subsystems of physical qubits. We introduce a conditional witnessing technique to certify GME that is efficient in the number of subsystems and, importantly, robust against experimental noise and imperfections. Specifically, we prove that the detection of entanglement in a linear number of bipartitions by a number of measurements that also scales linearly, suffices to certify GME. Moreover, our method goes beyond the standard procedure of separating the state from the convex hull of biseparable states, yielding an improved finesse and robustness compared to previous techniques. We apply our method to the noisy readout of stabilizer operators of the distance-three topological color code and its flag-based fault-tolerant version. In particular, we subject the circuits to combinations of three types of noise, namely, uniform depolarizing noise, two-qubit gate depolarizing noise, and bit-flip measurement noise. We numerically compare our method with the standard, yet generally inefficient, fidelity test and to a pair of efficient witnesses, verifying the increased robustness of our method. Last but not least, we provide the full translation of our analysis to a trapped-ion native gate set that makes it suitable for experimental applications.
000902776 536__ $$0G:(DE-HGF)POF4-5224$$a5224 - Quantum Networking (POF4-522)$$cPOF4-522$$fPOF IV$$x0
000902776 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902776 7001_ $$0P:(DE-HGF)0$$aBermudez, Alejandro$$b1
000902776 7001_ $$0P:(DE-Juel1)179396$$aMüller, Markus$$b2$$eCorresponding author
000902776 7001_ $$0P:(DE-HGF)0$$aShahandeh, Farid$$b3
000902776 773__ $$0PERI:(DE-600)3063626-7$$a10.1103/PRXQuantum.2.020304$$gVol. 2, no. 2, p. 020304$$n2$$p020304$$tPRX quantum$$v2$$x2691-3399$$y2021
000902776 8564_ $$uhttps://juser.fz-juelich.de/record/902776/files/PRXQuantum.2.020304.pdf$$yOpenAccess
000902776 909CO $$ooai:juser.fz-juelich.de:902776$$popenaire$$pdnbdelivery$$pdriver$$pVDB$$popen_access
000902776 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179396$$aForschungszentrum Jülich$$b2$$kFZJ
000902776 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5224$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
000902776 9141_ $$y2021
000902776 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902776 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000902776 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPRX QUANTUM : 2022$$d2023-10-27
000902776 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-27
000902776 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-27
000902776 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-12-20T16:22:33Z
000902776 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-12-20T16:22:33Z
000902776 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2021-12-20T16:22:33Z
000902776 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2021-12-20T16:22:33Z
000902776 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-27
000902776 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-27
000902776 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-27
000902776 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-27
000902776 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-27
000902776 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPRX QUANTUM : 2022$$d2023-10-27
000902776 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-27
000902776 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-27
000902776 920__ $$lyes
000902776 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
000902776 980__ $$ajournal
000902776 980__ $$aVDB
000902776 980__ $$aI:(DE-Juel1)PGI-2-20110106
000902776 980__ $$aUNRESTRICTED
000902776 9801_ $$aFullTexts