001     902777
005     20220103172046.0
024 7 _ |a 10.1103/PhysRevApplied.15.064074
|2 doi
024 7 _ |a 2331-7019
|2 ISSN
024 7 _ |a 2331-7043
|2 ISSN
024 7 _ |a 2128/29149
|2 Handle
024 7 _ |a altmetric:108414739
|2 altmetric
024 7 _ |a WOS:000670307200001
|2 WOS
037 _ _ |a FZJ-2021-04548
082 _ _ |a 530
100 1 _ |a Xu, Xuexin
|0 P:(DE-Juel1)176178
|b 0
245 _ _ |a Z Z Freedom in Two-Qubit Gates
260 _ _ |a College Park, Md. [u.a.]
|c 2021
|b American Physical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1637846815_10843
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Superconducting qubits on a circuit exhibit an always-on state-dependent phase error. This error is due to sub-MHz parasitic interaction that repels computational levels from noncomputational ones. We study a general theory to evaluate the “static” repulsion between seemingly idle qubits as well as the “dynamical” repulsion between entangled qubits under microwave driving gate. By combining qubits of either the same or opposite anharmonicity signs we find the characteristics of static and dynamical ZZ freedoms. The latter universally eliminate the parasitic repulsion, leading us to mitigate high-fidelity gate operation. Our theory introduces the opportunities for making perfect entangled and unentangled states, which is extremely useful for quantum technology.
536 _ _ |a 5224 - Quantum Networking (POF4-522)
|0 G:(DE-HGF)POF4-5224
|c POF4-522
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Ansari, Mohammad
|0 P:(DE-Juel1)171686
|b 1
|e Corresponding author
|u fzj
773 _ _ |a 10.1103/PhysRevApplied.15.064074
|g Vol. 15, no. 6, p. 064074
|0 PERI:(DE-600)2760310-6
|n 6
|p 064074
|t Physical review applied
|v 15
|y 2021
|x 2331-7019
856 4 _ |u https://juser.fz-juelich.de/record/902777/files/PhysRevApplied.15.064074.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:902777
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)176178
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)171686
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5224
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-31
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV APPL : 2019
|d 2021-01-31
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-31
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-31
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-31
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-2-20110106
|k PGI-2
|l Theoretische Nanoelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-2-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21