000902779 001__ 902779 000902779 005__ 20220131124547.0 000902779 0247_ $$2doi$$a10.1103/PhysRevB.100.024509 000902779 0247_ $$2ISSN$$a1098-0121 000902779 0247_ $$2ISSN$$a2469-9977 000902779 0247_ $$2ISSN$$a0163-1829 000902779 0247_ $$2ISSN$$a0556-2805 000902779 0247_ $$2ISSN$$a1095-3795 000902779 0247_ $$2ISSN$$a1538-4489 000902779 0247_ $$2ISSN$$a1550-235X 000902779 0247_ $$2ISSN$$a2469-9950 000902779 0247_ $$2ISSN$$a2469-9969 000902779 0247_ $$2Handle$$a2128/29148 000902779 0247_ $$2altmetric$$aaltmetric:44423146 000902779 0247_ $$2WOS$$aWOS:000476685600003 000902779 037__ $$aFZJ-2021-04550 000902779 082__ $$a530 000902779 1001_ $$0P:(DE-Juel1)171686$$aAnsari, Mohammad$$b0$$eCorresponding author$$ufzj 000902779 245__ $$aSuperconducting qubits beyond the dispersive regime 000902779 260__ $$aWoodbury, NY$$bInst.$$c2019 000902779 3367_ $$2DRIVER$$aarticle 000902779 3367_ $$2DataCite$$aOutput Types/Journal article 000902779 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1637846724_10843 000902779 3367_ $$2BibTeX$$aARTICLE 000902779 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000902779 3367_ $$00$$2EndNote$$aJournal Article 000902779 520__ $$aSuperconducting circuits consisting of a few low-anharmonic transmons coupled to readout and bus resonators can perform basic quantum computations. Since the number of qubits in such circuits is limited to not more than a few tens, the qubits can be designed to operate within the dispersive regime where frequency detunings are much stronger than coupling strengths. However, scaling up the number of qubits will bring the circuit out of the regime, and this invalidates current theories. We develop a formalism that allows to consistently diagonalize the superconducting circuit Hamiltonian beyond the dispersive regime. This will allow to study qubit-qubit interaction unperturbatively, therefore, our formalism remains valid and accurate at small or even negligible frequency detuning; thus, our formalism serves as a theoretical ground for designing qubit characteristics for scaling up the number of qubits in superconducting circuits. We study the most important circuits with single- and two-qubit gates, i.e., a single transmon coupled to a resonator and two transmons sharing a bus resonator. Surprisingly, our formalism allows to determine the circuit characteristics, such as dressed frequencies and Kerr couplings, in closed-form formulas that not only reproduce perturbative results, but also extrapolate beyond the dispersive regime and can ultimately reproduce (and even modify) the Jaynes-Cumming results at resonant frequencies. 000902779 536__ $$0G:(DE-HGF)POF4-5224$$a5224 - Quantum Networking (POF4-522)$$cPOF4-522$$fPOF IV$$x0 000902779 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 000902779 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.100.024509$$gVol. 100, no. 2, p. 024509$$n2$$p024509$$tPhysical review / B$$v100$$x1098-0121$$y2019 000902779 8564_ $$uhttps://juser.fz-juelich.de/record/902779/files/PhysRevB.100.024509.pdf$$yOpenAccess 000902779 909CO $$ooai:juser.fz-juelich.de:902779$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000902779 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171686$$aForschungszentrum Jülich$$b0$$kFZJ 000902779 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5224$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0 000902779 9141_ $$y2021 000902779 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-05-04 000902779 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04 000902779 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-05-04 000902779 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-05-04 000902779 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement 000902779 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2019$$d2021-05-04 000902779 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04 000902779 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-05-04 000902779 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-05-04 000902779 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000902779 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-05-04 000902779 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-05-04 000902779 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-05-04 000902779 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-05-04 000902779 920__ $$lyes 000902779 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0 000902779 9801_ $$aFullTexts 000902779 980__ $$ajournal 000902779 980__ $$aVDB 000902779 980__ $$aUNRESTRICTED 000902779 980__ $$aI:(DE-Juel1)PGI-2-20110106