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Superconducting qubits beyond the dispersive regime
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Superconducting circuits consisting of a few low-anharmonic transmons coupled to readout and bus resonators
can perform basic quantum computations. Since the number of qubits in such circuits is limited to not more than
a few tens, the qubits can be designed to operate within the dispersive regime where frequency detunings are
much stronger than coupling strengths. However, scaling up the number of qubits will bring the circuit out of
the regime, and this invalidates current theories. We develop a formalism that allows to consistently diagonalize
the superconducting circuit Hamiltonian beyond the dispersive regime. This will allow to study qubit-qubit
interaction unperturbatively, therefore, our formalism remains valid and accurate at small or even negligible
frequency detuning; thus, our formalism serves as a theoretical ground for designing qubit characteristics for
scaling up the number of qubits in superconducting circuits. We study the most important circuits with single-
and two-qubit gates, i.e., a single transmon coupled to a resonator and two transmons sharing a bus resonator.
Surprisingly, our formalism allows to determine the circuit characteristics, such as dressed frequencies and Kerr
couplings, in closed-form formulas that not only reproduce perturbative results, but also extrapolate beyond
the dispersive regime and can ultimately reproduce (and even modify) the Jaynes-Cumming results at resonant
frequencies.

DOI: 10.1103/PhysRevB.100.024509

I. INTRODUCTION

Quantum computation is rapidly progressing toward prac-
tical technology [1–4]. So far, quantum bits have been well de-
veloped on superconducting circuits [5]. When cooled to mi-
likelvin temperatures, coherent tunneling of the Cooper pairs
through the Josephson junction (JJ) exhibits slightly nonlinear
harmonic oscillations with addressable energy levels [6]. Such
quantum states have long coherent times and can operate
on nanosecond scales. Moreover, they are compatible with
microwave control technology and can scale up in number.
All these features makes superconducting qubits one of the
prominent platforms for constructing a multiqubit quantum
processor [7,8].

The state-of-the-art superconducting circuits contain a few
tens of qubits with an operational gate error rate about 0.1%
for single qubit gates [9] and 1% for two-qubit gates [10]
below the threshold for error detection in the surface code
[11]. Scaling up the qubit number beyond this limit dramat-
ically increases errors, and the key milestone of the next few
years is to reduce the errors [12,13]. Achieving this not only
requires further enhancements in the circuit quality [14], but
also needs progressive advancement in theory [15]. So far, the
Jaynes-Cummings model, originally introduced in quantum
optics [16], and its generalization have been routinely applied
on superconducting circuits. These models have been, so far,
well studied for parameters admissible by perturbation theory,
namely, within the “dispersive regime” [17,18] as well as spe-
cial resonant frequency solutions [19,20]. However, scaling up
the number of qubits within the narrow domain of parameters
will introduce new issues, such as circuit frequency crowding

[21], that must be avoided. Recently, it has been discussed
that significant advantages can be made in engineering cir-
cuits outside of the dispersive regime [22]. However, those
studies have been performed numerically in the absence of
established theory.

Motivated by the “black box quantization” method, here,
we develop a formalism for evaluating the qubit charac-
teristics in circuits consisting of transmons and resonators
at arbitrary frequencies and coupling strengths. Black box
quantization has been recently introduced in Ref. [23] for
circuits consisting of low anharmonic transmons coupled to
resonators. The low anharmonicity allows dividing the circuit
Hamiltonian into harmonic and anharmonic sectors. In the
absence of anharmonicity, the transmons and the resonators
can be treated on equal footing, thus, the Foster decomposition
[24] can replace the harmonic circuit with a set of lumped
imaginary impedances seen by the anharmonic sector. Iden-
tifying the characteristic impedances is of central importance
in this method for which Ref. [23] proposes iterative feedback
between experiment and theory. This formalism has initiated,
so far, several progressive improvements for extracting cir-
cuit parameters from electromagnetic simulation [25–27]. In
Fig. 1, the harmonic sector is made of N qubits (in blue boxes)
coupled to cavity modes (in the gray area). The curly (red)
crosses denote anharmonic sectors.

After introducing a unitary transformation matrix in the
space of the total number of qubits and resonators, we find
a normal-mode basis for the harmonic sector of a multiqubit
circuit. Using the transformation, we determine all dressed
frequencies and Kerr nonlinear terms in the leading order of
anharmonicity. The simplicity and accuracy of this method
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FIG. 1. N transmons (blue boxes) coupled to a multimode res-
onator; the curly (red) crosses are the nonlinear JJs that represent the
anharmonicity sector, everything else makes the harmonic one.

allow us to present the results of a transmon and two trans-
mons in closed-form formulas. For complex circuits, this
method provides insightful Hamiltonian diagonalization in-
side and outside of the dispersive regime, which will be
progressively useful in scaling up the number of qubits. We
explain the formalism first in the single transmon, then, we
generalize it before we solve another example of two trans-
mons.

II. SINGLE TRANSMON COUPLED TO A RESONATOR

A transmon coupled to a resonator. The canonical vari-
ables are charges and phases [28], i.e., (qi, φi ) with i being
t, r for transmon and resonator. The transmon is coupled
to the center conductor of the resonator by the capacitance
Cg. The dipole interaction Hint = βVrqt couples the transmon
charge and the resonator voltage Vr = qr/Cr with Cr/t being
the resonator/transmon capacitance and β ≡ Cg/Ct . Keeping
β � 1 guarantees the increase in qubit coherence time [29].
The circuit harmonic and anharmonic sectors sum to define
the circuit classical Hamiltonian,

H = Hhar + Hanhar, Hanhar = − EC

3Z2
t h̄2 φ4

t ,

Hhar =
∑
i=r,t

q2
i

2Ci
+ φ2

i

2Li
+ Hint, (1)

The characteristic impedances and the harmonic frequen-
cies in the circuit are Zi = √

Li/Ci and ωi = 1/
√

LiCi, respec-
tively, with EC being the total capacitive energy of transmon
(including the JJ and shunt capacitances as well as capacitive
coupling between transmon and voltage sources), and h̄ being
the reduced Planck constant. We define canonical variables
(Qi, Xi ) ≡ (qi

√
Li, φi/

√
Li ) such that the harmonic part of

Eq. (2) can be transformed to

Hhar = 1

2
QTMQ + 1

2
XTX, M =

[
ω2

t g
√

4ωtωr

g
√

4ωtωr ω2
r

]
,

(2)

with g ≡ βωr
√

Zr/4Zt , Q ≡ (Qt , Qr ), and X ≡ (Xt , Xr ).
This Hamiltonian can be diagonalized by unitarily trans-

forming Q and X into new canonical variables Q and X , i.e.,
Qi = ∑

j Si jQ j and Xi = ∑
j Ti jX j . Given that the variables

in the new and the old frames must satisfy the Poisson

brackets of canonical coordinates, i.e., {Qi,X j} = {Qi, Xj} =
δi j , one can find that Ti j = Si j (see Appendix A). The only
term in Eq. (2) that needs diagonalization is QTMQ, which,
in the new basis, must look like QT�Q with � being a di-
agonal matrix �tt = ω̄2

t , �rr = ω̄2
r , and zero otherwise. The

unitary transformation S is, therefore, the matrix of columns
of normalized eigenvectors of M.

In the new basis, the following dressed frequencies can
be found in the linear sector: ω̄t ≡ K2

− and ω̄r ≡ K2
+ with

K± ≡ 2−(1/4)(ω2
t + ω2

r ± �� s−1)1/4 and s ≡ [1 + 16(g/�)2

ωrωt/�
2]−1/2, � ≡ ωr + ωt , and � ≡ ωr − ωt . The unitary

transformation matrix S is made of columns of the following
normalized eigenvectors [±√

(1 ∓ s)/2,
√

(1 ± s)/2]T asso-
ciated with the eigenvalues K2

±. (In Appendix H, similar
results have been found using the Bogoliubov transforma-
tions [30].) In this basis, the anharmonic term propor-
tional to X 4

t should be transformed using the phase trans-
formation Xt = −√

(1 + s)/2Xt + √
(1 − s)/2Xr , and this

can make many types of terms possible, e.g., CmXm
r X 4−m

t
with coupling strengths Cm(s) and m = 0–4. In the origi-
nal eigenbasis |n j〉 with j = t, r, the ladder operators â j =∑

n j

√
n j + 1 |n j〉 〈n j + 1| can help to rewrite the charge op-

erator Q̂ j = √
h̄/2ω j (â

†
j + â j ) and the phase operator X̂ j =

i
√

h̄ω j/2(â†
j − â j ) [28]. Similarly, in the normal-mode basis,

the ladder operators α̂k determine the new charge and phase
operators: Q̂ j and X̂ j . These two bases can be transformed
into one another using the following Bogoliubov-Velatin
transformation: â†

t − ât = Utt (α̂
†
t − α̂t ) + Utr (α̂†

r − α̂r ) with
Utt = −[(1 + s)ω̄t/2ωt ]1/2 and Utr = [(1 − s)ω̄r/2ωt ]1/2.

The anharmonic quantum Hamiltonian from Eq. (2) can be
written as Hanhar. = −(δ/12)(â†

t − ât )4 with δ ≡ EC being the
anharmonicity coefficient. In the new basis, this Hamiltonian
is transformed to − δ

12 [Utt (α̂
†
t − α̂t ) + Utr (α̂†

r − α̂r )]4, defin-
ing the self-Kerr coefficient [31] of the transmon χt = δU 4

tt
and that of the resonator χr = δU 4

tr . Note that the anharmonic
Hamiltonian is not diagonal in the normal-mode basis, how-
ever, we can simplify it by ignoring irrelevant terms to first
order and applying a secular approximation. This reformulates
the total Hamiltonian to

H =
∑
i=t,r

ω̄iα̂
†
i α̂i − χi

2

[
(α̂†

i α̂i )
2 + α̂

†
i α̂i + 1

2

]

−2χrt

(
α̂†

t α̂t + 1

2

)(
α̂†

r α̂r + 1

2

)
, (3)

The transmon state in the normal-mode basis makes a shift
proportional to χrt , namely, the cross-Kerr coefficient in the
resonator frequency. It is simple to show that χrt = √

χrχt

and, therefore, it linearly scales with the anharmonicity δ.
Defining “dressed frequency” ω̃i to be the coefficient of α̂

†
i α̂i

after summing over all relevant terms, we find the following
closed-form formula for the dressed frequencies:

ω̃t = K2
− − χt

2
− χrt , ω̃r = K2

+ − χr

2
− χrt , (4)

χt = δ(1 + s)2K4
−/4ω2

t , χr = δ(1 − s)2K4
+/4ω2

t , (5)

which indicate Ent nr = ∑
i ω̃ini − χ2

i n2
i /2 − 2χrt nt nr . The va-

lidity of these formulas are much wider than the dispersive
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regime, in fact, they are valid for arbitrary coupling strength
and frequency detuning.

Let us compare our results with other models. In
general, two sets of analytical results are known for the
circuit: (i) within the dispersive regime, which defines
the validity of perturbation theory, or (ii) at resonant
frequencies in the Jaynes-Cummings model. In the dispersive
regime, the detuning frequency is much stronger than the
coupling strength, i.e., g/� � 1, and, within this regime,
Eqs. (4) and (5) are expanded in polynomials of g/�.
This will result in the following dressed frequencies: ω̃t ≈
ωt − 2ωrg/��, ω̃r ≈ ωr + 2g2ωt/��, and the self-Kerr
nonlinearities χt = δ[1 − 4g2ωr (ω2

r + ω2
t )/ωt�

2�2] and
χr = 16δ(g/�)4ω4

r /�
4. These expressions are in agreement

with the non-rotating-wave approximation (non-RWA)
results recently reported in Ref. [32] using perturbation
theory. In the RWA regime g � � � �, therefore,
we can simplify these expressions by using Ref. [32]:
ωr/� ≈ ωt/� ≈ 1/2. The RWA dressed frequencies are
ω̃RWA

t ≈ ωt − δ/2 − g2/� − δg2/�2, ω̃RWA
r ≈ ωr + g2/� −

δg2/�2, χRWA
t ≈ δ[1 − 2(g/�)2], χRWA

r ≈ δ(g/�)4. These
results are in agreement with the original perturbative Lamb
and ac Stark shifts reported by Koch et al. in Ref. [33] and
experimentally observed [34].

(a)

(b)

FIG. 2. Exact (solid) and perturbative (dashed) results
for (a) dressed frequencies (b) cross Kerr in the circuit with
ωt = 6.5 GHz, ωr = � + ωt , g = 0.3 GHz, and δ = 0.15 GHz.
(Inset) Rescaled dressed frequency detuning at resonant bare
frequency in the Jayns-Cumming and the exact models.

Figure 2(a) shows the transmon and the resonator dressed
frequencies at different detuning frequencies � and a fixed
coupling strength g. For the choice of circuit parameters, there
is a negligible mismatch between RWA and non-RWA pertur-
bative results, therefore, on the logarithmic scales, the lines la-
beled by perturbation can be plotted using both formulations.
In large detuning �, the exact dressed frequencies of Eq. (4),
on the solid lines, are in good agreement with the perturbative
(dotted) results. However, as g/� increases almost above
∼1/3, the difference between exact and perturbative results
starts to appear. Another regime of interest is the special
solution of the resonant point where bare frequency of the
transmon and the resonator are the same. Perturbation theory
at this point diverges, however, the Jaynes-Cumming model
predicts that due to atom-photon coupling, a 2g frequency
gap between the two dressed frequencies is produced [19,20].
Our exact formalism in Eq. (4) not only confirms this result,
but also provides a modification in it due to the presence of
finite anharmonicity in transmons, which makes the dressed
frequency detuning 2g(1 − δ/4ωr ). Figure 2(b) inset shows
this gap rescaled by 2g at different coupling strengths g,
which is unity for infinite anharmonicity (labeled J.C.); and
is nonlinear for finite anharmonicity. Figure 2(b) shows cross-
Kerr coefficient—defined below Eq. (3)—in the solid line and
compares it with the perturbative results in the dashed lines.
At the resonant point as expected, the perturbation theory
diverges, however, in contrast, the exact solution reveals the
finite value of δ/4 + o(g2) for any choice of bare frequencies.

III. GENERAL METHOD: N ATOMS
COUPLED TO A RESONATOR

N transmons coupled to a M resonator. The black box
quantization in the original form has been proposed as an
experimental method to get theoretical feedback on fitting
parameters. Here, we study a purely theoretical approach to
generalize it to N modes and M transmons. This will help
not only to scale up quantum circuits, but also to study
nonperturbative solutions.

Scaling up entanglement is one of the purely quantum
phenomena that is most crucial for quantum computing. Such
phenomena can take place in large-scale quantum circuits
with N transmons interacting with M resonators. A total
of N + M pairs of canonical variables can be defined: the
charge vector Q = (Q1, . . . , QN+M )T and the phase vector
X = (X1, . . . , XN+M )T . The circuit Hamiltonian can be di-
vided into a harmonic sector and a weakly anharmonic sec-
tor. The harmonic Hamiltonian is Hhar. = 1

2

∑N+M
i=1 ω2

i Q2
i +

1
2 X 2

i +∑N
i=1

∑N+M
j=N+1 gi j

√
4ωiω jQiQj . Using a generaliza-

tion of the M matrix in Eq. (2), this Hamiltonian is sim-
plified to Hhar. = 1

2 QTMQ + 1
2 XTX with the matrix M be-

ing nonzero only at MRR = ω2
r , MT T = ω2

a, MT R = MRT =
gt

√
4ωtωr ; subindices T labels transmons {1, 2, . . . , N} and

R labels the resonators {N + 1, . . . , M}. Consider that the
following unitary transformations charge Qi = ∑

j Si jQ j and
phases Xi = ∑

j Ti jX j take them to a normal-mode basis. As
discussed in Appendix A, these unitary transformations are
identical, i.e., Ti j = Si j . They transform the harmonic Hamil-
tonian to 1

2

∑
i ω̄iQ2

i + X 2
i . Detailed analysis show that S is
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the matrix of normalized eigenvectors of the M matrix. This
evaluates dressed frequencies in the absence of anharmonicity,
which, in this paper, we determine them exactly in a closed-
form formula for circuits with one and two transmons and one
resonator, however, for larger circuits the M matrix can be
evaluated numerically, and this determines all exact dressed
frequencies.

Once S is found, charges and phases can be promoted to
operators and rewritten in terms of ladder operator â in the
original basis and α̂ in the new basis. They transform to one
another as follows:

â†
i − âi =

N+M∑
j=1

Ui j (α̂
†
j − α̂ j ), Ui j ≡

√
ω̄ j

ωi
Si j . (6)

The anharmonic Hamiltonian
∑N

i=1(δi/12)(âi − â†
i )4 can

be similarly taken to the normal-mode basis—see Appendix H
for details. The smallness of anharmonicity in transmons
allows the nonlinear physical parameters to be evaluated in
leading order.

IV. TWO TRANSMONS COUPLED TO A RESONATOR

Two transmons sharing a bus resonator. This is an impor-
tant circuit for two-qubit gate calibration [35,36]. Let us de-
note ωi with i = 1–3 for the two transmons and the resonator,
respectively—alternatively, we sometimes use r (instead of 3)
to emphasize the resonator. The coupling strengths between
the transmons and the resonator are g1, g2. The M matrix is

M =

⎡
⎢⎣

ω2
1 0 g1

√
4ω1ω3

0 ω2
2 g2

√
4ω2ω3

g1
√

4ω1ω3 g2
√

4ω2ω3 ω2
3

⎤
⎥⎦. (7)

The M-matrix can be taken to a normal-mode basis within
a wide domain of parameters. The cubic equation λ3 + bλ2 +
cλ + d = 0 determines the eigenvalues λ of Eq. (7) with b ≡
−∑i=1–3 ω2

i , c ≡ ω2
1ω

2
2 + ω2

1ω
2
3 + ω2

2ω
2
3 −∑

i=1,2 4g2
i ωiω3,

and d ≡ 4g2
2ω

2
1ω2ω3 + 4g2

1ω1ω
2
2ω3 − ω2

1ω
2
2ω

2
3. Note that the

eigenvalues λk determine the circuit dressed frequencies,
i.e., ω̄k ≡ √

λk with k = 1–3. By defining θ ≡ λ + b/3, the
quadratic term is eliminated, i.e., θ3 − f θ + h = 0, f ≡
b2/3 − c, and h ≡ (2b3 − 9bc + 27d )/27. We solve this
equation using trigonometric trials functions and find

ω̄2
k = 2

√
f

3
cos

cos−1
[
− h

2

(
3
f

)3/2
]

− 2π (k − 1)

3
− b

3
. (8)

A relabeling of indices might be needed to identify corre-
sponding frequencies. Should the inverse cosine be always
between −1 and 1, h2/4 − f 3/27 < 0 must be satisfied for
real-valued solutions. In circuits suitable for quantum com-
putation, however, since coupling strengths are much smaller
than individual frequencies, this condition is trivially satisfied,
see Appendix B.

The anharmonic Hamiltonian transformed into the normal-
mode basis in the leading order can be written as

H =
∑

i=1–3

ω̃iα̂
†
i α̂i −

∑
i=1–3

{
χi

2
(α̂†

i α̂i )
2 + 2

∑
k>i

χik (α̂†
i α̂i )(α̂

†
k α̂k )

+
∑
k>i

⎛
⎝Jik +

∑
l 
=i,k

Likl α̂
†
l α̂l

⎞
⎠(α̂iα̂

†
k + α̂

†
i α̂k )

+
∑
k 
=i

Kik[(α̂†
i α̂i )α̂iα̂

†
k + α̂

†
i α̂k (α̂†

i α̂i )]

}
, (9)

with self-Kerr χi = ∑
j=1,2 δ jU 4

ji, cross-Kerr χik =∑
j=1,2 δ jU 2

jiU
2
jk , and Ui j being defined in Eq. (6)—see

Appendix C for details. One can evaluate the Kerr cofactors
and see that, in general, there is no simple relation between
cross-Kerr and self-Kerr coefficients.

In Eq. (9), the J coupling indicates a direct interaction
between two oscillators. The K and L terms are multiplied
by α̂

†
i α̂i, therefore, they are effectively nlLikl and niKik with

n being integer quantum numbers. These couplings linearly
depend on anharmonicity δ and are stronger in higher excited
states. Detailed analysis—see Appendices D and E—shows
that after block diagonalization these three interactions appear
in the effective Hamiltonian of the two-qubit circuit only in
the higher-order δ2, thus, they are negligible in the leading
order.

The dressed frequency of the transmons and resonator is

ω̃i = ω̄i − χi

2
−
∑
j( 
=i)

χi j, (10)

and the energy levels are En1–n3 = ∑3
i=1 niω̃i − χin2

i /2 −
2
∑

k>i χiknink . Figure 3(a) shows all dressed frequencies
given the bare values ω1 = 3 GHz, ω2 = αω1, and ωr =
ω1 + �r1. We obtain perturbative results (dotted) using
the formalism explained in Refs. [37,38]—more explicitly
Eqs. (4.3)–(4.5) of the first reference. For the fixed coupling
strength g and large �r1 � g, the results of perturbation
theory and Eq. (10) are in good agreement. Far from the dis-
persive regime, however, the two become much deviated. For
example, in a circuit with the frequency of transmon 1 and a
resonator in resonance, perturbation theory diverges, however,
Eq. (10) predicts a finite dressed frequency gap as shown in
Fig. 3(a). In the case of α < 1 and g/ω1 < (1 − α2)/3

√
6, a

series expansion of Eq. (10) in terms of g shows that in the ab-
sence of anharmonicity �̃r1 ≈ 2g and �̃12 ≈ �12 − g + [(1 +
α)−1 + (1 + α)/2]g2/�12 + o(g3). Figure 3(b) shows the spe-
cial case of resonant transmons with ω1 = ω2 ≡ ω. Our exact
evaluation indicates that all dressed frequencies become off-
resonant at the values of ω,

√
(ω2 + ω2

r ± �� r−1)/2 with
r−2 ≡ 1 + 32g2ωωr/�

2
r1�

2
r1. The special case of maximal

resonance, i.e., ωr = ω, the dressed frequencies will be found
to be �̃r1 ≈ �̃12 ≈ √

2g in the absence of anharmonicity, see
Appendix F for details. These are all previously unknown
results that can be used, for instance, to identify bad samples
in circuit fabrications.
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FIG. 3. Perturbative (dotted) and exact (solid) dressed frequen-
cies in the circuit with bare frequencies (dashed) of transmons
ω1 = 3 GHz, ω2 = αω1, and the resonator ωr = ω1 + �r1, cou-
plings g ≡ g1,2 (=0.1 GHz) and δ ≡ δ1,2 (=0.1 GHz). (a) α = 0.86,
and (b) three-body resonance α = 1.

Before the Discussion, let us comment on evaluating the
effective impedances introduced by the black box quanti-
zation [23]. They are assumed to be unknown parameters
and can be evaluated in iterative feedback between theory
and experiment. Our formalism, however, reveals a number
of constraints that link between the effective impedances
that make the simpler be theoretically estimated. For the
simple example of a transmon coupled to a resonator,
the effective impedances can be found analytically: Zeff

t =
ω̃t (1 + s)Zt/2ωt and Zeff

r = ω̃r (1 − s)Zt/2ωr . Their ratio in
the dispersive regime is Zeff

r /Zeff
t ∼ (g/�)2, which indicates

the characteristic impedance associated with the transmon
exceeds that of the resonator.

V. DISCUSSION

We presented a rigorous method to exactly obtain effective
qubit parameters from the Hamiltonian of superconducting
circuits consisting of resonators and JJs at arbitrary coupling
strengths and frequency detunings. Using this formalism,
we exhibited a single transmon and two transmons outside
of the dispersive regime in closed-form formulas. For com-
plicated circuits, finding analytical expressions may not be
easy, however, our formalism can determine qubit parameters

numerically much easier and more accurately compared to
perturbation theory in the charge basis because the M matrix
(defined in the text) linearly scales with the number of qubits
and resonators and all we need is to find its eigenvectors. This
simplicity and accuracy will play an essential role for scaling
up superconducting circuits as it allows to explore the possi-
bilities of new domains of parameters for elevated fidelities.
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APPENDIX A: UNITARY TRANSFORMATION
OF CANONICAL VARIABLES

Consider two N-dimensional vectors of canonical vari-
ables q = (q1, q2, . . . , qN ) and p = (p1, p2, . . . , pN ). These
variables satisfy the Poisson bracket relation {qi, p j} =
δi j with i, j = 1, 2, . . . , N and the definition of { f , g} =∑N

i=1(∂ f /∂qi )(∂g/∂ pi ) − (∂ f /∂ pi )(∂g/∂qi ).
Let us consider the following unitary transformations

take place on these variables: Qi = ∑N
j=1 Si jq j and Pi =∑N

j=1 Ti j p j . In order to have the two new variables Q and
P be canonical variables, they must satisfy a similar Pois-
son bracket relation as those of old variables: {Qi, Pj} = δi j .
This indicates that {Qi, Pj} = ∑N

k=1(∂Qi/∂qk )(∂Pj/∂ pk ) −
(∂Qi/∂ pk )(∂Pj/∂qk ). One can easily simplify these rela-
tions into

∑N
k=1 SikTjk = δi j . Because of the unitarity of

the transformation matrices S and T , one can see that∑N
k=1 SikS†

k j = δi j . For real matrices, we have S†
k j = S jk , thus,

T = S.

APPENDIX B: CONSTRAINTS WITHIN THE EXACT
FORMULA FOR A TWO-TRANSMON CIRCUIT

Another condition that can be concluded from Eq. (8) of
the main article is the following:

2

√
f

3
cos

cos−1
(− h

2

(
3
f

)3/2)− 2π (k − 1)

3
− b

3
� 0. (B1)

By definition, we have always b � 0, therefore, the condi-
tion can be checked in the cases where the cos function is
negative, therefore, we need to check the following condi-
tion: −2

√
f /3 + |b|/3 � 0, which can be further simplified

to b2/3 > c. Substituting the definitions will introduce the
following condition to hold:

ω4
1 + ω4

2 + ω4
3 � ω2

1ω
2
2 + ω2

1ω
2
3 + ω2

2ω
2
3

− 4g2
1ω1ω2 − 4g2

2ω2ω3.

We take the first three terms from the right side to the left,
then simplify the left side to arrive at the following condition:(

ω2
1 − ω2

2

)2 + (
ω2

2 − ω2
3

)2 + (
ω2

3 − ω2
1

)2

� −4g2
1ω1ω2 − 4g2

2ω2ω3,
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which trivially holds valid without imposing any limitations
on parameters.

APPENDIX C: UNITARY TRANSFORMATION FOR TWO
TRANSMONS COUPLED TO A RESONATOR

The unitary transformation to the diagonal basis in the
harmonic sector is carried out by the matrix of normalized
eigenstates with columns being eigenvectors, which is

S =

⎡
⎢⎣

V1γ12

N1

V1γ22

N2

V1γ32

N3

V2γ11

N1

V2γ21

N2

V2γ31

N3
γ11γ12

N1

γ21γ22

N2

γ31γ32

N3

⎤
⎥⎦, (C1)

with Vi ≡ gi
√

4ωrωi, γi j = ω̄2
i − ω2

j , and Ni =√
V 2

2 γ 2
i1 + V 2

1 γ 2
i2 + γ 2

i1γ
2
i2 .

APPENDIX D: ADDITIONAL INTERACTION TERMS

In the circuit made of two transmons coupled to a shared
resonator, the anharmonic part of the Hamiltonian can be
simplified to Eq. (9) in the main article. Below are detailed
interaction couplings in terms of bare parameters,

Jik =
∑
j=1,2

δ j

[
1

3
U 3

jiUjk + U 3
jkUji + 2

3

(UjiUjkUj3)2

Uj1Uj2

]
,

Kik =
∑
j=1,2

δ jU
3
jiUjk, Sikl = 4

3

∑
j=1,2

δ j
(UjiUjkUj3)2

UjiUjk
.

(D1)

APPENDIX E: BLOCK DIAGONALIZATION

Let us consider the Hamiltonians of two harmonic oscilla-
tors (labeled 1 and 2) coupled to a resonator (labeled 3),

H = H0 + εHint, H0 ≡
∑

i=1–3

ωiα̂
†
i α̂i,

Hint ≡
∑

k=1,2

gk (α̂3α̂
†
k + α̂

†
3 α̂k ).

The unperturbed part H0 in the eigenbasis of itself is
diagonal, however, Hint is not. In general, we may not be
able to find a tranformation to a fully diagonal matrix, but
instead, we can separate out a subset of states from the
rest of the states. The Schrieffer-Wolff transformation is
one way to block diagonalize the interacting Hamiltonian
into low-energy and high-energy sectors (see Ref. [39]).
This usually takes place by transforming the Hamiltonian
by the anti-Hermitian operator exp S in the following way:
HBD = exp(−S)H exp S, which can be expanded into HBD =∑

n=0[H, S]n/n! with [H, S]n+1 = [[H, S]n, S] and [H, S]0 =
H . One can, in principle, assume a geometric series expansion
of the transformation matrix: S = ∑

i=0(ε)iSi; however, given
that the zeroth order or order of HBD is HBD0 = [H0, S0] = H0,
therefore, S0 must be diagonal too, which is, in fact, inconsis-
tent with the definition of S to be anti-Hermitian and block
off diagonal (bod), therefore, always S0 = 0. In the first order,
the Hamiltonian is already given by Hint which can be made
of block-diagonal (bd) and bod matrices Hint = Hbd

int + Hbod
int .

Therefore, HBD1 = [H0, S1] = −Hbod
int . In the second order,

HBD2 = [H0, S2] + [Hint, S1] + (1/2)[[H0, S1], S1], and so on.
Putting all together, one can find the effective Hamiltonian up
to the second-order HBD = H0 + Hbd

int + (1/2)[Hbod
int , S1].

Using the relations above for the Hamiltonian of Eq. (E1)
in which the interaction is block off diagonal, one can use the
following ansatz:

S1 = −
∑

k=1,2

gk (α̂3α̂′†
k − α̂

†
3 α̂

′
k ), (E1)

with α̂′
k ≡ ∑∞

n=0

√
n + 1(ω3 − ωk )−1|n〉〈n + 1| being the

modified ladder operator for the kth transmon, given that
the normal ladder operator for the same transmon is α̂k ≡∑∞

n=0

√
n + 1|n〉〈n + 1|.

One can explicitly determine the effective Hamiltonian up
to the second order of perturbation theory becoming

HBD = H0 −
∑

i, j=1,2;(i 
= j)

gig j

2
(α̂iα̂′†

j + α̂
†
i α̂

′
j ). (E2)

APPENDIX F: RESONANT TRANSMONS

In a circuit with two transmons in resonance
ω1 = ω2 ≡ ω and homogeneous coupling and anharmonicity
g1 = g2 ≡ g and δ1 = δ2 ≡ δ, the harmonic Hamiltonian
is Hhar. = 1

2ω2(Q2
1 + Q2

2) + 1
2ω2

r Q2
r + 1

2 (X 2
1 + X 2

2 +
X 2

r ) + g
√

4ωωr (Q1 + Q2)Q3. Defining the vectors
Q = (Q1, Q2, Qr )T and P = (P1, P2, Pr )T, this Hamiltonian
can be rewritten as Hhar. = 1

2 QTMQ + 1
2 XTX with matrix M

being

M =
⎡
⎣ω2 0 V

0 ω2 V
V V ω2

r

⎤
⎦, (F1)

with V ≡ g
√

4ωωr . Because the off-diagonal elements are
identical, it is easy to find the eigenvalues, which are

ω,

√√√√ω2 + ω2
r ±

√(
ω2 − ω2

r

)2 + 8V 2

2
.

At the extreme resonance with ωr = ω, the eigenenergies will
become

ω, ω

√
1 ± 2

√
2g

ω
.

In the limit of small coupling g � ω, this can be simplified
to

ω, ω ±
√

2g.

APPENDIX G: ANHARMONICITY

Consider the following Bogoliubov transformations for the
transmon ladder operator:

ân =
∑

m

Anmα̂m + Bnmα̂†
m, (G1)

and using the relation between transmon charge number and

phase and the ladder operator ân = √
ωn
2 q̂n + i

√
1

2ωn
p̂n and its
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conjugate as well as similarly in the transformed basis α̂n =√
ω̃n
2 Q̂n + i

√
1

2ω̃n
P̂n, one can find

Anm =
(√

ωn

8ω̃m
+
√

ω̃m

8ωn

)
Snm,

Bnm =
(√

ωn

8ω̃m
−
√

ω̃m

8ωn

)
Snm,

in which ω̃ is the frequency in the transformed basis.
The anharmonicity in the Hamiltonian will be − δi

12 (ai −
a†

i )4. The operator part can be Bogoliubov transformed to
the new basis, keeping terms with as many creations as
annihilations, ignoring frequencies,

(an − a†
n)4 = 6

3∑
m=1

(Anm − Bnm)4[(α̂†
mα̂m)2 + α̂†

mα̂m]

+ 6
∑
m<k

(Anm − Bnm)2(Ank − Bnk )2
[
α̂2

mα̂
†2
k

+ α̂†2
m α̂2

k + 4α̂†
mα̂mα̂

†
k α̂k + 2α̂†

mα̂m + 2α̂
†
k α̂k

]
+ 4

∑
m 
=k

(Anm − Bnm)3(Ank − Bnk )
(
α̂2

mα̂†
mα̂

†
k

+ α̂†2
m α̂mα̂k + 2α̂†

mα̂mα̂mα̂
†
k

+ 2α̂†
mα̂mα̂†

mα̂k + α̂mα̂
†
k + α̂†

mα̂k
)

+ 8
∑

m 
=k 
=l

(Anm − Bnm)2(Ank − Bnk )(Anl − Bnl )

× (
α̂2

mα̂
†
l α̂

†
k + α̂†2

m α̂l α̂k + 2α̂†
mα̂mα̂l α̂

†
k

+ 2α̂†
mα̂mα̂

†
l α̂k + α̂l α̂

†
k + α̂

†
l α̂k

)
.

APPENDIX H: BOGOLIUBOV TRANSFORMATION
FOR HAMILTONIAN DIAGONALIZATION

In this Appendix, we use the quantum Hamiltonian of
a transmon coupled to a resonator H = 4Ecn − EJ cos φ +
Hres. Separating the harmonic sector and the anharmonic
sector and using Bogoliubov transformation, we diagonalize
the interacting harmonic sector into a diagonal quantum har-
monic Hamiltonian. We find all Bogoliubov transformation
coefficients, which turns out to be similar to the results we
took from semiclassical analysis.

Given that the charge number operator is proportional to
ladder operators n ∼ 2−(1/4)(a + a†), the phase is the conju-
gate variable φ ∼ 21/4(a − a†), and the resonator Hamiltonian
is Hres = ωrb†b; the circuit Hamiltonian can be written as

H = ωqa†a − δ
12 (a − a†)4 + ωrb†b + g(a + a†)(b + b†) with

harmonic part being Hhar = ωqa†a + ωrb†b + g(a + a†)
(b + b†).

We would like to Bogoliubov transform the Hamiltonian
into a diagonal Hamiltonian H,

H = ω̃qα
†α + ω̃rβ

†β − 1
12 [χ1/4

q (α − α†) + χ1/4
r (β − β†)]4.

We use a technique widely used in second quantized quan-
tum field theory, which is to Bogoliubov transform creation
and annihilation operators,

â = Aα̂ + Bβ̂ + Cα† + Dβ†,

b̂ = E α̂ + F β̂ + Gα† + Hβ†.

Eight equations are needed to determine coefficients; four
by enforcing that the transformed Hamiltonian preserves
eigenvalues, which is equivalent to equating Hho and Hho

and setting coefficients of α̂α̂, β̂β̂, α̂β̂, and α̂β̂† to zero,
respectively,

ωqAC∗ + ωrEG∗ + g(A + C∗)(E + G∗) = 0, (H1)

ωqBD∗ + ωrFH∗ + g(B + D∗)(F + H∗) = 0, (H2)

ωq(BC∗ + AD∗) + ωr (FG∗ + EH∗) + g[(A + C∗)

× (F + H∗) + (B + D∗)(E + G∗)] = 0, (H3)

ωq(DC∗ + AB∗) + ωr (HG∗ + EF ∗) + g[(A + C∗)

× (F + H∗) + (B + D∗)(E + G∗)] = 0. (H4)

The other four are determined by enforcing commutation
relations, i.e., [a, a†] = [b, b†] = 1 and [a, b] = [a, b†] =
0, respectively, given that [α, α†] = [β, β†] = 1 and zero
otherwise,

|A|2 + |B|2 − |C|2 − |D|2 = 1, (H5)

|E |2 + |F |2 − |G|2 − |H |2 = 1, (H6)

AG + BH − CE − DF = 0, (H7)

AE∗ + BF ∗ − CG∗ − DH∗ = 0. (H8)

For simplicity, we assume coefficients are real valued, but
the equations are difficult to be analytically solved. A practical
simplification can be achieved by defining new variables,

A± ≡ A ± C, B± ≡ B ± D,

E± ≡ E ± G, F± ≡ F ± H,

which reformulates the equations given above to the follow-
ing:

ωq(A2
+ − A2

−) + ωr (E2
+ − E2

−) + 4gE+A+ = 0,

ωq(B2
+ − B2

−) + ωr (F 2
+ − F 2

− ) + 4gF+B+ = 0,

ωq(A+B+ − A−B−) + ωr (E+F+ − E−F−) + 2g(A+F+ + B+E+) = 0,

ωqA−B− + ωrE−F− = 0, A−A+ + B+B− = 1, E−E+ + F+F− = 1,

A−E+ + B−F+ = 0, A+E− + B+F− = 0.
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Given that one may solve the Bogoliubov coefficient equa-
tions, we can determine new frequencies in H,

ω̄r = ωq

2
(B2

+ + B2
−) + ωr

2
(F 2

+ + F 2
− ) + 2gB+F+,

ω̄q = ωq

2
(A2

+ + A2
−) + ωr

2
(E2

+ + E2
−) + 2gA+E+.

One can easily prove that F+F− = A+A−, which simpli-
fies equations and helps to find the following two important
equalities:

E2
+ = ωrA+(1 − A−A+)

ωqA−
, E2

− = ωqA−(1 − A−A+)

ωrA+
. (H9)

Substituting them in Eq. (H10), we find one equation
between A±,

[
ω2

qA−(A3
+ − A−) + ω2

r A2
+(1 − A+A−)

]2

− 16ωrωqg2A5
+A−(1 − A−A+) = 0. (H10)

This is one of the main equations we need to solve. Another
one can be determined taking some nontrivial steps listed
below: We use Eq. (H10), substitute B± from the unnumbered
equation in the sentence beginning with “Given that one...,”,
multiply two sides in E+F 2

−F+, and simplify it, and magically
the final equation is again a second equation that relation A±,

(1 − A−A+)A+A−

(
ω2

r

2ωq
− ωq

2

)2

− (2A−A+ − 1)2 = 0.

(H11)
Now, we solve these two equations together. To do so, we

first define x = A+A− and substitute in Eq. (H11) a(1 − x)x −
(2x − 1)2 = 0 with a ≡ �2�2

4g2ωrωq
, � = ωr + ωq, and � = ωr −

ωq. The exact real-valued solution is

A−A+ = 1

2
+ 1

2
s, s−1 ≡

√
1 + 16g2ωrωq

�2�2
,

and substituting in Eq. (H10) determines exact real-valued A±,

A− = 2−(3/4)ω−(1/2)
q

√
1 + s

(
ω2

q + ω2
r − �� s−1

)1/4
,

A+ = 2−(1/4)ω1/2
q

√
1 + s

(
ω2

q + ω2
r − �� s−1

)−(1/4)
,

E− = −2−(3/4)ω−(1/2)
r

√
1 − s

(
ω2

q + ω2
r − �� s−1

)1/4
,

E+ = −2−(1/4)ω1/2
r

√
1 − s

(
ω2

q + ω2
r − �� s−1)−(1/4)

,

F− = 2−(3/4)ω−(1/2)
r

√
1 + s

(
ω2

q + ω2
r + �� s−1

)1/4
,

F+ = 2−(1/4)ω1/2
r

√
1 + s

(
ω2

q + ω2
r + �� s−1

)−(1/4)

B− = 2−(3/4)ω−(1/2)
q

√
1 − s

(
ω2

q + ω2
r + �� s−1

)1/4

B+ = 2−(1/4)ω1/2
q

√
1 − s

(
ω2

q + ω2
r + �� s−1

)−(1/4)
.

In order to find F±, yet we need to simplify Eq. (H10) by
multiplying on both sides of F−F+ and rewriting B± in terms

of A±, E±, and F± as Eq. (H9)

(
F−
F+

)2

= 1

2

ω2
q + ω2

r + �� s−1

ω2
r

.

Defining

K± ≡ 2−(1/4)
(
ω2

q + ω2
r ± �� s−1

)1/4
,

then,

A =
√

1 + s

23/2

(√
ωq

K−
+ K−√

ωq

)
,

B =
√

1 − s

23/2

(√
ωq

K+
+ K+√

ωq

)
,

C =
√

1 + s

23/2

(√
ωq

K−
− K−√

ωq

)
,

D =
√

1 − s

23/2

(√
ωq

K+
− K+√

ωq

)
,

E = −√
1 − s

23/2

(√
ωr

K−
+ K−√

ωr

)
,

F =
√

1 + s

23/2

(√
ωr

K+
+ K+√

ωr

)
,

G = −√
1 − s

23/2

(√
ωr

K−
− K−√

ωr

)
,

H =
√

1 + s

23/2

(√
ωr

K+
− K+√

ωr

)
.

We can expand the functions in terms of small coupling g
to any order. Below are results up to the fourth order:

Substituting in the definition of new frequencies, one finds

ω̃r = (2s)−(1/2)
√(

ω2
q + ω2

r

)
s + ��,

ω̃q = (2s)−(1/2)
√(

ω2
q + ω2

r

)
s − ��.

In the weak interaction limit, these frequencies turn into
Lamb and Stark shifts. Below we evaluate them up to fourth
order,

ω̃r = ωr + 2ωqg2

��
− 2g4ω2

q

(
5ω2

r − ω2
q

)
ωr�3�3

+ O(g5),

ω̃q = ωq − 2g2ωr

��
− 2g4ω2

r

(
ω2

r − 5ω2
q

)
ωq�3�3

+ O(g5).

Anharmonicity can be easily derived using the following
relation:

(a − a†)4 = 6(A − C)4[(α†α)2 + α†α],

+ 6(B − D)4[(β†β )2 + β†β]

+ 12(A − C)2(B−D)2(2α†αβ†β + α†α + β†β ).
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