000902785 001__ 902785 000902785 005__ 20211130141934.0 000902785 037__ $$aFZJ-2021-04556 000902785 041__ $$aEnglish 000902785 1001_ $$0P:(DE-Juel1)165875$$aTan, Zihan$$b0$$eCorresponding author$$ufzj 000902785 1112_ $$aINM & IBI Retreat 2021$$cJülich/Online$$d2021-10-05 - 2021-10-06$$wGermany 000902785 245__ $$aMesoscopic modeling of postsynaptic Signal Transduction 000902785 260__ $$c2021 000902785 3367_ $$033$$2EndNote$$aConference Paper 000902785 3367_ $$2DataCite$$aOther 000902785 3367_ $$2BibTeX$$aINPROCEEDINGS 000902785 3367_ $$2DRIVER$$aconferenceObject 000902785 3367_ $$2ORCID$$aLECTURE_SPEECH 000902785 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1638249582_14776$$xAfter Call 000902785 500__ $$aReferences:[1] D. Hilger, M. Masureel, and B. K. Kobilka, Nat. Struct. Mol. Biol., 25, 4 (2018).[2] S. Ferréa, F. Ciruelab, V. Casadóc, and L. Pardod, Prog. Mol. Biol. Transl. Sci., 169, 297 (2020)[3] Z. Tan, V. Calandrini J. K. G. Dhont, G. Nägele, and R. G. Winkler, Soft Matter, 17, 7978 (2021). 000902785 520__ $$aNeuronal signal transduction plays a central role in brain functioning, and it involves molecular signaling cascades in which different biomacromolecules are diffusing and interacting. These electrochemical cascades are initiated in the two-dimensional postsynaptic cell membrane and three-dimensional cytosol, and they are responsible for information transmission and regulation of biological processes related to memory, learning, and mood. Specifically, interactions and mobilities of postsynaptic membrane proteins are altered depending on their location in or near to the membrane. Studies suggest that G-protein coupled receptors (GPCRs) can form dimers/oligomers inside the membrane [1], thereby affecting their transport and hence signaling [2]. To date, the links between spatio-temporal correlations of membrane macromolecules and the neuronal cascades are not resolved. To explore how diffusion mechanism, direct and hydrodynamic interactions, and oligomerization of membrane proteins affect the regulation of neurotransmission, we have developed a mesoscale model of first-stage postsynaptic signaling, using accordingly adjusted multiparticle collision dynamics (MPC) and Langevin dynamics simulation methods. The newly developed, coarse-graining MPC algorithm [3] allows to model postsynaptic proteins as Brownian particles migrating inside and alongside a three-layer immiscible binary fluid. This work is a collaboration with INM-9, with a shared Vorstand-Doktorand, and IBI-5. 000902785 536__ $$0G:(DE-HGF)POF4-5244$$a5244 - Information Processing in Neuronal Networks (POF4-524)$$cPOF4-524$$fPOF IV$$x0 000902785 7001_ $$0P:(DE-Juel1)166168$$aCalandrini, Vania$$b1$$ufzj 000902785 7001_ $$0P:(DE-Juel1)130616$$aDhont, Jan K.G.$$b2$$ufzj 000902785 7001_ $$0P:(DE-Juel1)131039$$aWinkler, Roland G.$$b3$$ufzj 000902785 7001_ $$0P:(DE-Juel1)130858$$aNaegele, Gerhard$$b4$$ufzj 000902785 909CO $$ooai:juser.fz-juelich.de:902785$$pVDB 000902785 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165875$$aForschungszentrum Jülich$$b0$$kFZJ 000902785 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166168$$aForschungszentrum Jülich$$b1$$kFZJ 000902785 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130616$$aForschungszentrum Jülich$$b2$$kFZJ 000902785 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131039$$aForschungszentrum Jülich$$b3$$kFZJ 000902785 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130858$$aForschungszentrum Jülich$$b4$$kFZJ 000902785 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5244$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0 000902785 9141_ $$y2021 000902785 9201_ $$0I:(DE-Juel1)IBI-4-20200312$$kIBI-4$$lBiomakromolekulare Systeme und Prozesse$$x0 000902785 980__ $$aconf 000902785 980__ $$aVDB 000902785 980__ $$aI:(DE-Juel1)IBI-4-20200312 000902785 980__ $$aUNRESTRICTED