001     902786
005     20240625095116.0
024 7 _ |a 2128/29191
|2 Handle
037 _ _ |a FZJ-2021-04557
041 _ _ |a English
100 1 _ |a Tan, Zihan
|0 P:(DE-Juel1)165875
|b 0
|e Corresponding author
|u fzj
111 2 _ |a 11th LIQUID MATTER CONFERENCE 2020/2021
|c Prague/Online
|d 2021-07-19 - 2021-07-23
|w Czech Republic
245 _ _ |a Quasi-two-dimensional diffusion of interacting protein monomers and dimers: A MPC simulation study
260 _ _ |c 2021
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1638180176_8734
|2 PUB:(DE-HGF)
|x After Call
500 _ _ |a References:[1] G. Gompper, T. Ihle, D. M. Kroll, R. G. Winkler, Adv. Polym. Sci, 221, 1-87 (2008). [2] Z. Tan, J. K. G. Dhont, V. Calandrini, and G. Nägele, paper in preparation.[3] S. Panzuela and R. Delgado-Buscalioni, Phys. Rev. Lett., 121, 048101 (2018).[4] Z. Tan, V. Calandrini, J. K. G. Dhont, G. Nägele, and R. G. Winkler, arXiv:2105.01492 (2021).
520 _ _ |a Understanding lateral diffusion of proteins along a membrane is of importance in biological soft matter science. An example in case is postsynaptic neuronal signal transduction where specific proteins diffuse alongside a postsynaptic membrane, triggering a cascade of biochemical processes. There are challenging questions to answer such as how the collective and self-diffusion of the proteins are affected by their direct and hydrodynamic interactions for larger areal protein concentrations. Using the multi-particle collision dynamics (MPC) simulation methods [1], we explore protein diffusion under quasi-two-dimensional (Q2D) confinement, for two different model systems of proteins. In the first system, the proteins are modeled as Brownian spheres interacting, respectively, by a hard-sphere potential serving as a reference potential, and by a soft potential with competing short-range attractive and long-range repulsive parts. For a minimalistic description of proteins diffusing along a cytosol-membrane interface, the Brownian spheres are confined to lateral motion in a planar monolayer embedded in an unbound three-dimensional Newtonian fluid. The time scales in the dynamic simulations extend from very short times where inertial effects are resolved, up to long times where the solvent-mediated hydrodynamic interactions between the proteins are fully developed and non-retarded [2]. By computing velocity autocorrelation functions, mean-square displacements and Fourier-space current auto-correlation functions, we quantify how concentration-induced correlations affect, e.g., the anomalous enhancement of large-scale collective diffusion under Q2D confinement [3], and the development of inter-protein hydrodynamic interactions by multiple scattering of sound and by vorticity diffusion [2]. The second model system relates to the diffusion of a human dumbbell-shaped M2 muscarinic acetylcholine receptor protein where the upper segment is embedded in the neuronal cell membrane, and the lower one in the cytosol. The protein is simply modelled by a two-beads dimer with the upper bead immersed in a high-viscosity fluid sheet (fluid A) mimicking the membrane, and the lower one in a lower-viscosity fluid B mimicking the intra- and also extracellular environment. We use a recently developed MPC scheme for generating a fluid sheet A inside another fluid B [4]. Using this mesoscale method, diffusion can be probed over time spans not accessible in atomistic MD simulations of proteins. We study the mean squared displacement and velocity autocorrelation function of the individual bead centres and the hydrodynamic centre of mobility of the dumbbell, in dependence of the viscosity ratio sheet thickness and interfacial bead distances.
536 _ _ |a 5244 - Information Processing in Neuronal Networks (POF4-524)
|0 G:(DE-HGF)POF4-5244
|c POF4-524
|f POF IV
|x 0
700 1 _ |a Calandrini, Vania
|0 P:(DE-Juel1)166168
|b 1
|u fzj
700 1 _ |a Dhont, Jan K.G.
|0 P:(DE-Juel1)130616
|b 2
|u fzj
700 1 _ |a Winkler, Roland G.
|0 P:(DE-Juel1)131039
|b 3
|u fzj
700 1 _ |a Naegele, Gerhard
|0 P:(DE-Juel1)130858
|b 4
|u fzj
856 4 _ |u https://juser.fz-juelich.de/record/902786/files/LMC2021-ZihanTan_Poster.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:902786
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)165875
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)166168
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130616
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131039
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130858
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5244
|x 0
914 1 _ |y 2021
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-4-20200312
|k IBI-4
|l Biomakromolekulare Systeme und Prozesse
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-5-20120330
|k IAS-5
|l Computational Biomedicine
|x 1
920 1 _ |0 I:(DE-Juel1)IBI-5-20200312
|k IBI-5
|l Theoretische Physik der Lebenden Materie
|x 2
920 1 _ |0 I:(DE-Juel1)INM-9-20140121
|k INM-9
|l Computational Biomedicine
|x 3
980 1 _ |a FullTexts
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-4-20200312
980 _ _ |a I:(DE-Juel1)IAS-5-20120330
980 _ _ |a I:(DE-Juel1)IBI-5-20200312
980 _ _ |a I:(DE-Juel1)INM-9-20140121
981 _ _ |a I:(DE-Juel1)IAS-2-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21