Quasi-two-dimensional diffusion of interacting protein monomers and dimers: a MPC simulation study

Zihan Tan¹, Vania Calandrini², Jan K. G. Dhont¹, Roland G. Winkler³ and Gerhard Nägele¹

- . Biomacromolecular Systems and Processes (IBI-4), Institute of Biological Information Processing, Forschungszentrum Jülich
- 2. Computational Biomedicine (INM-9 / IAS-5), Institute for Advanced Simulation, Forschungszentrum Jülich
- 3. Theoretical Physics of Living Matter (IBI-5/IAS-2), Institute of Biological Information Processing, Forschungszentrum Jülich

Abstract: Modeling lateral diffusion of proteins at a membrane

- Diffusion of proteins along a membrane: e.g., in neuronal signaling where proteins diffuse along a postsynaptic membrane, triggering a cascade of biochemical processes.
- Minimalistic model: Interacting Brownian particles embedded in a three-dimensional (3D) Newtonian fluid, but confined to a planar monolayer
- Anomalous enhancement of time-dependent, large-scale protein collective diffusion under quasi-two-dimensional (Q2D) confinement
- Hydrodynamic retardation effects in concentrated Q2D protein solutions
- Methods: Multiparticle collision dynamics (MPC) & Langevin dynamics (LD) simulations
- More detailed model: Non-spherical proteins diffusing along a fluid-fluid interface
- Explore effects of crowding and membrane-cytosol viscosity difference on protein diffusion

G-protein-dependent signaling Adenylyl cyclase G protein coupling activation Effector proteins ligand **GPCR** fluid B Reassembly of heterotrimeric G protein

1. Globular protein model

Brownian spheres globular proteins

 Proteins confined in-plane, interacting via short-range attraction (SA) & long-range electrostatic repulsion (LR)

Fluid motion described by MPC simulations

3. Hydrodynamic retardation

Vorticity diffusion:

- Positive t^{-3/2} long-time tail in VAF for concentrated Q2D SALR protein systems at long times
- Short-range attraction slows translational correlations at times earlier than single-protein sonic time $\tau_c = R/c_s$

Role of sound propagation:

Distinct longitudinal current-current correlation function

$$J_d(q,t) = rac{1}{Nq^2} \left\langle \sum_{i=1}^N \sum_{j
eq i}^N oldsymbol{q} \cdot oldsymbol{v}_i(t) oldsymbol{v}_j(0) \cdot oldsymbol{q} \exp\left[i oldsymbol{q} \cdot (oldsymbol{R}_i - oldsymbol{R}_j)
ight]
ight
angle$$

- o Amplified peaks at t< $\tau_{\rm c}$
- Long-time oscillations are suppressed
- Three hydrodyn. length scales are identified at sonic times

2. Anomalous enhancement of collective diffusion

Hydrodynamic function H(q):

=> characterizes strength of hydrodynamic interactions (HIs)

Time-dependent distinct hydrodynamic function $H_d(q,t)$: => cross-correlations due to time-dependent HIs

- Onset of HIs at $t \sim \tau_h = R^2/\nu$: single-protein vorticity diffusion time, ν the kinematic viscosity
- o Three hydrodyn. length scales identified in Q2D $H_d(q,t)^{[1]}$

4. Lateral diffusion of proteins near fluid-fluid interface

Effects of interfacial hydrodynamics and viscosity contrast:

- New algorithm for: three-layers MPC binary fluid with viscosity contrast [2]
- o Correct lateral hydrodynamic mobility reproduced^[3]

- Hard-core (green) beads mimicking crowding effects of lipids
- Sub-diffusive regimes recovered, spanning three decades
- Center of mass / mobility of protein shows slowest diffusion

5. Effects of crowding

- Dumbbell model of a GPCR protein diffusing at fluid-fluid interface with viscosity contrast
- MSDs of different centers are tracked

6. Conclusions & Outlook

- Anomalous enhancement of collective diffusion of proteins already at inertial timescales
- Three different hydrodynamic length scales at inertial timescales are identified
- Multiple sound-scattering is suppressed by short-range attraction in crowded Q2D-SALR protein systems

- Refined modeling: introduce lipid degrees of freedom and full HIs
- GPU-based performance acceleration

7. References & Acknowledgement

- [1] Z. Tan, J. K. G. Dhont, V. Calandrini, and G. Nägele, in preparation (2021).
- [2] Z. Tan, V. Calandrini, J. K. G. Dhont, G. Nägele and R. G. Winkler, submitted (2021).
- [3] J. Bławzdziewicz, M.L. Ekiel-Jeżewska, and E. Wajnryb, J. Chem. Phys., **133**, 114702 (2010).
- Computing time granted by JARA-HPC on supercomputer

JURECA at FZJ is gratefully acknowledged.