
Exploring the impact of node failures on the
resource allocation for parallel jobs

Ioannis Vardas1[0000−0001−5461−556X], Manolis Ploumidis1[0000−0003−2173−062X],
and Manolis Marazakis1[0000−0002−4768−3289]

Institute of Computer Science (ICS), Foundation for Research and Technology –
Hellas (FORTH), Greece 100 N. Plastira Av., Vassilika Vouton, Heraklion, GR-70013,

Greece {vardas,ploumid,maraz}@ics.forth.gr

Abstract. Increasing the size and complexity of modern HPC systems
also increases the probability of various types of failures. Failures may
disrupt application execution and waste valuable system resources due
to failed executions. In this work, we explore the effect of node failures
on the completion times of MPI parallel jobs. We introduce a simulation
environment that generates synthetic traces of node failures, assuming
that the times between failures for each node are independently dis-
tributed, following the same distribution but with different parameters.
To highlight the importance of failure-awareness for resource allocation,
we compare two failure-oblivious resource allocation approaches with
one that considers node failure probabilities before assigning a partition
to a job: a heuristic that randomly selects the partition for a job, and
Slurm’s linear resource allocation policy. We present results for a case
study that assumes a 4D-torus topology and a Weibull distribution for
each node’s time between failures, and considers several different traces
of node failures, capturing different failure patterns. For the synthetic
traces explored, the benefit is more prominent for longer jobs, up to
82% depending on the trace, when compared with Slurm and a failure-
oblivious heuristic. For shorter jobs, benefits are noticeable for systems
with more frequent failures.

Keywords: Impact of node failures on MPI parallel jobs · Fault-aware
resource allocation · Synthetic node failure trace generation.

1 Introduction

HPC systems grow in size to meet the increased demand for both capability
and capacity. At the same time, heterogeneity and complexity also increase to
keep pace with application demand for performance. Several studies have out-
lined that the higher scale and complexity of HPC systems comes at the cost of
more frequent failures [16, 23, 21, 3]. Furthermore, larger scale and more complex
systems will introduce more complex software stacks to exploit their resources,
with more frequent software-related errors [23, 6]. To further motivate the im-
portance of fault-tolerance, authors in [23, 6, 16] argue that reliability, along with
resource management and energy efficiency, will be among the main obstacles



2 I. Vardas et al.

towards robust exascale. Error resilience has been recognized to be one of the
major technical research priorities for the next years, in the European Technol-
ogy Platform for HPC (ETP4HPC) strategic research agenda [1].

By combining failure logs and traces with workload logs, several studies have
outlined the impact of various system failures on system resource utilization.
Authors in [7] report that in a large-scale HPC system, 20% or more of the
computing resources are wasted due to failures and recovery. For one of Google’s
multipurpose clusters, it was found that a large fraction of time is spent for
jobs that do not complete successfully [6]. The authors in [19] show that system
related errors cause an application to fail once every 15 minutes. What is more,
failed applications, although few in number, account for approximately 9% of
total production hours. Authors in [21] examine node failure rate in the dataset
collected during 1995–2005 at LANL. The number of failures per year per system
can be as high as 1100, implying that an application requiring the entire cluster
is expected to fail more than two times per day.

Therefore, node failures in a HPC system need to be considered both from
the point of view of job completion times (a main concern for application owners)
and from the point of view of potential resource wastage (one of the main con-
cerns of system owners and operators). To mitigate the impact of failures, differ-
ent approaches have been proposed including checkpointing [14, 27, 25], schedul-
ing methods [5, 13] and methods for resource allocation and resource manage-
ment [30, 10, 18, 11]. For evaluating the effectiveness of these approaches, failures
traces and logs acquired from a real HPC system or cluster have been used. How-
ever, traces constitute merely a snapshot of a real system, corresponding to a
specific size and period of operation. Moreover, several studies have shown that
failures are affected by the workload [28, 22].

It is therefore important to be able to explore the efficiency of fault tolerance
methods under different failure conditions in a controllable and configurable
manner. In this work, we present a simulation environment based on a synthetic
trace generator for node failures. Further to the evaluation of fault tolerance
methods, this work is a tool for system operators to assess the cost of failures,
expressed in node-hours lost, either due to failure-oblivious resource allocation,
or the overhead of fault-tolerance methods. We assume that for each node time-
to-failure (TTF) is independently distributed, with all nodes following the same
distribution, but with different parameters for each node.

To highlight the importance of failure aware resource allocation, we com-
pare three different approaches with two of them being failure oblivious. The
first one is based on a simple heuristic that searches for different contiguous and
rectangular partitions of a torus topology. Then, based on the findings of [12], we
estimate for each such partition the probability of failing during the upcoming
job. This approach is compared against Slurm’s [29] linear resource allocation,
and to a heuristic that selects a partition for each job in a random manner.
Both of these comparison baselines are oblivious to the probability of node fail-
ures. Finally, we illustrate the potential benefits of the failure-aware resource
allocation approach with a set of simulation results for a case study concerning



Exploring the impact of node failures 3

a 4D-torus topology with 4096 nodes. The mean time between failures for each
node is independently distributed, and follows the Weibull distribution [12, 11].
The scale and shape parameters of the corresponding distribution for each node
are determined by two separate Gaussian distributions. Results derived with our
simulation environment suggest that the benefit achieved by a failure-aware re-
source allocation approach depends on the system failure pattern. Specifically,
the benefit is more prominent for larger jobs (job duration ≥ 24h) in systems
with less frequent failures. This benefit is up to 82%, depending on the simulated
trace. For shorter jobs, the benefit becomes notable only on systems with more
frequent failures.

2 Simulation environment

In this section we describe our simulation environment and its main components.
Fail-stop errors cause the execution of an application to terminate due to a
hardware or software fault, whereas silent errors can impact the result of an
application without causing termination. In this paper, we focus on Fail-stop
type of failures. Moreover, with the term failure we refer hardware- or software-
related deviation from nominal operating behavior. We further assume that a
node restart is enough to fix transient failures, and that nodes fail independently
of each other. Our simulation environment is not meant to offer the same level
of simulation accuracy like Simgrid [4] or xSim [9]. In the current version we
do not rely on any networking or processor model for deriving an accurate job
duration; instead, we assume that job durations are known and explore three
resource allocation approaches under different failure patterns. Job durations
can be specified either through a distribution a post-processed trace.

Fig. 1: Synthetic failure generation process.



4 I. Vardas et al.

2.1 Generator of node failure traces

The key component of our simulated environment is the node failure trace gen-
erator. It assumes that the time to failure (TTF ) for each node are indepen-
dently distributed and characterized by the same distribution, but with each
node having different distribution parameters. The synthetic node failure gen-
erator assigns the parameters to each node’s TTF distribution. Each such pa-
rameter value is a sample drawn from a normal distribution. The main idea
behind this assignment is that appropriate choices for the mean and standard
deviation of the normal distribution lead to a predictable range of generated
parameters for the TTF distribution of each node, and provide a degree of con-
trol on the way in which node parameters are distributed within this range. To
make the above failure trace generation method more clear, we use as an ex-
ample the case study presented in Section 3. We assume a topology of N nodes
where TTF for node i is modeled with a Weibull distribution Wi ∼ (λi, ki),
where λi denotes the scale and ki the shape of the corresponding distribution,
respectively. Figure 1 summarizes the trace generation flow for this case study.
In step 1, scale and shape parameter values are assigned to each node’s TTF
distribution. Gλ ∼ (µλ, σλ) denotes the normal distribution from which samples
are drawn to provide the scale parameter. The corresponding distribution for
the shape parameter is Gk ∼ (µk, σk). In the second step, K different failure
times are generated for each node. The jth failure time for node i is estimated as
ti,j = ti,j−1 + wi,j where wi,j is the jth sample of Wi ∼ (λi, ki) and t(i, 0) = 0.
In the third step, all different ti,j are merged into a single time-series and then
sorted to derive the time of system failures, denoted as (ts,1, ts,2, . . . ).

2.2 Resource allocation alternatives

The second major component of the simulation environment presented in this
paper consists of the different resource allocation approaches. The first, denoted
as Slurm-linear, is the resource allocation implemented by Slurm’s linear se-
lection plugin [2]. Nodes are arranged in an one-dimensional array, and for a
request for k nodes with no overcommit requirement, the first k consecutive
available nodes are allocated to the job. The other two approaches are specific
to 4D-torus topologies, and are based on a heuristic that extracts a contiguous
and rectangular partition from the 4D-torus topology. Its goal is to avoid con-
tention from other partitions. If static routing is further assumed, this heuristic
also ensures that failures of nodes that do not belong to the selected partition
will not affect any job running on that. In the current version of the simulation
environment, we rely on a simple heuristic for extracting such a partition. How-
ever, more elaborate approaches that also consider fragmentation may also be
used [20, 15]. The second resource allocation approach implemented is random
partition selector (RPS). When emulation of a new job’s execution is needed,
our heuristic populates a list of available contiguous and rectangular topology
partitions, and then RPS selects one of them randomly, without consideration of
any information or estimate about node failure probabilities. Both Slurm-linear
and RPS are failure-oblivious approaches, and serve as comparison baselines.



Exploring the impact of node failures 5

The third approach implemented, will be denoted as failure aware partition
selection - FAPS hereafter. It is based on the finding of [12] and consists of
two steps. First, it utilizes the aforementioned heuristic to get a list of available
contiguous and rectangular torus partitions, with Pi denoting the ith partition.
In the second step, the goal is to select the partition that is the least probable to
fail during that the execution duration of the job being scheduled. Let us assume
a topology of n = 1...N nodes where resources needed to be allocated for the
jth with duration dj . As per the case study presented in Section 3, we assume
that each node’s TTF follows a Weibull distribution. For simplicity, let t denote
the uptime of the nth node after its last failure. Following the findings of [12],
the probability that a node n will fail in dj given that it has survived until t is
expressed through Equation 1, where kn denotes the shape parameter of the nth

node’s TTF distribution and λn the corresponding scale parameter.

pfn = P (T ≤ dj + t|t) = 1− e
tkn−(dj+t)

kn

λn
kn (1)

Then, the probability of a partition Pi failing in dj is derived via Equation 2,
which enables the proposed resource allocation approach to identify the partition
with the lowest failure probability (argmin

i
P fi ).

P fi = 1−
N∏
n=1

(1− pfn) (2)

2.3 Impact of node failures to a batch of MPI parallel jobs

The third component of the simulation environment is the logic that schedules
jobs for execution. This component checks if the synthetic node failure generator
has generated any fault on any node that belongs on the partition assigned to
that job. The input to this component is a batch of jobs, where jobs durations
are assumed to be known. More precisely, job durations can be specified through
a post-processed trace of a distribution. In the current version of our simulation
environment, no concurrent job execution is emulated. Instead, each job jk+1

is assigned resources and scheduled for execution only after job jk completes.
When a node failure occurs at some point in time, the uptime of that node is set
to 0. If this node is assigned to the job whose execution is currently emulated,
then this job is marked as aborted. When the job is aborted, both RPS and
FAPS rerun their corresponding scheduling logic to determine a new partition
to assign the job to.

3 Evaluation Case Study

In this section we present a case study of a system consisting of 4096 nodes,
arranged in an 8x8x8x8 4D-torus topology. The TTF of every node follows a
Weibull distribution, with different parameters for each node. We use our sim-
ulation environment to compare the time required to complete a batch of jobs
in the presence of failures, when resources are allocated according to the ap-
proaches discussed in Section 2: the two failure-oblivious ones (Slurm-linear,



6 I. Vardas et al.

RPS ), and the failure-aware approach FAPS. We consider different simula-
tion scenarios by using different parameters for the normal distributions de-
picted in Figure 1, thus controlling the combination of shape and scale param-
eters assigned to the Weibull distribution characterizing the TTF of each node.

0 540 1,080 1,620 2,160 2,800

0

2

4

6
·10−3

t

f(
t)

shape=0.8 MTTF=2447
shape=0.9 MTTF=2272
shape=4.0 MTTF=1957
shape=8.0 MTTF=2034
shape=16 MTTF=2089
shape=32 MTTF=2123

Fig. 2: Impact of shape on node TTF.

Scale Shape Avg node System

tid µλ σλ µk σk MTTF MTTF

1 5800 0.1 8 0.1 5462 1.37

2 5800 0.1 32 0.1 5700 1.42

3 8500 0.1 8 0.1 8004 2.04

4 8500 0.1 32 0.1 8345 2.13

5 16000 0.1 8 0.1 15068 4.04

6 16000 0.1 32 0.1 15726 4.27

7 22000 0.1 8 0.1 20718 5.36

8 22000 0.1 32 0.1 21623 5.72

Table 1: Normal distribution parameters
for scale & shape, and resulting MTTF
(hours).

Figure 2 shows how the corresponding shape parameter affects a node’s TTF,
with the scale value set to a value corresponding to 2160 hours (i.e. uptime of
approximately 3 months). Each curve corresponds to a different pdf. As shape
values become larger, a single node’s MTTF approaches the corresponding scale
value. Each of the 8 main rows in Table 1 corresponds to a different node failure
trace. For each trace, we derive scale and shape parameters for the TTF distri-
bution of 4096 nodes following the process depicted in Figure 1. Columns 2 and
3 are, respectively, the mean and standard deviation of the normal distribution
that generates the values for the scale parameter of each node. Columns 4 and 5
are the mean and standard deviation parameters of the normal distribution that
generates the corresponding shape values for each node. Each pair of scale and
shape values defines the parameters of each node’s TTF following the Weibull
distribution. Following the process described in Section 2.1, time series of fail-
ures for each node are generated. Merging and sorting the time series of all
nodes, for a period of 10 years, allows us to extract the system-wide MTTF. For
the experiments discussed in the rest of this section, for both normal distribu-
tions we set the standard deviation to a rather small number compared to the
mean, resulting in an homogeneous cluster of nodes (in terms of their scale and
shape parameters). For the normal distribution that generates scale values, we
have used two alternative settings for the mean: 5800 and 22000. These settings
correspond to average scale values over all nodes. From the first two traces in
Table 1, we notice that, when the average scale value is 5800, the corresponding
average MTTF over all nodes is 5700 for the higher average shape value, and
5462 for the setting of 8. So, the average scale value used in the first normal dis-
tribution, when combined with large shape values, directly affects each node’s
MTBF. Another observation is that, although average MTBF over all nodes is
as high as 5800 in the first two traces, the corresponding system wide MTTF to



Exploring the impact of node failures 7

failure is 1.37 hours, suggesting that, there is at least one node failure every 1.37
hours. Even when the average node MTBF is 21623 hours which corresponds to
one failure per 2.46 years approximately, the system wide MTTF is 5.72 hours.

Next, we present results for each one of the simulated scenarios explored. The
description of each simulated scenario consists of the following information: (a)
number of jobs in the batch, (b) job duration for each job instance, (c) job size in
terms of number of processes, and finally (d) a synthetic trace of failures. For the
case study presented in this section, we use one of the eight traces listed in Table
2. For each simulated scenario, before emulating each job’s execution, a resource
allocation is carried out using the three methods described in Section 2.2. To
determine whether a job execution fails, we extract all nodes that belong to the
partition assigned to that job, for each allocation method. If the corresponding
failure trace indicates a failure for one or more nodes, the job is considered
aborted. Then, batch completion time is augmented by tj,i+rt where rt denotes
the node repair time and tj,i job’s j execution time until the failure. After a
node is rebooted and considered fixed, its uptime is reset to 0. The aborted job
is rescheduled for execution, i.e. the resource allocation step is repeated until
its execution completes. For the simulation results presented here, the topology
size is set to 4096 nodes, arranged in an 8x8x8x8 4D-torus. Job size is set to
256 processes, and we assume batches of homogeneous jobs, i.e. jobs of the same
duration. However, different simulation scenarios are possible with different job
sizes and durations drawn from traces. Batch size is set to 1000 jobs, and we
consider 5 different job durations: 4, 8, 24, 48, and 72 hours. Repair time (rt) for
a failed node is set to 9 minutes. The simulation environment discussed though,
also allows to specify a distribution for deriving node repair times.

4 8 24 48 72
0

0.5

1

·105

Single Job Duration(hrs)

B
at
ch

C
om

p
le
ti
on

T
im

e(
h
rs
)

FAPS Slurm-linear RPS

(a) SMTTF=5.36, shape=8

4 8 24 48 72
0

2

4

6

8

·104

Single Job Duration(hrs)

FAPS Slurm-linear RPS

(b) SMTTF=5.72, shape=32

Fig. 3: Completion Time for 1000 Jobs, 256 processes, Scale=22000.

Due to space limitations, we focus only on the traces that resulted in the lower
and higher system MTTF (denoted as SMTTF ). These 4 traces are enough to
describe the key patterns observed in all our simulated scenarios. A common
observation for Figures 3a, 3b is that for the shorter duration jobs emulated
(4, 8, 24 hours), the benefit of the failure aware resource allocation (FAPS ), in



8 I. Vardas et al.

4 8 24 48 72
0

2

4

6
·105

Single Job Duration(hrs)

B
at
ch

C
om

p
le
ti
on

T
im

e(
h
rs
)

FAPS Slurm-linear RPS

(a) SMTTF=1.37, shape=8

4 8 24 48 72
0

0.5

1

1.5

·105

Single Job Duration(hrs)

FAPS Slurm-linear RPS

(b) SMTTF=1.42, shape=32

Fig. 4: Completion Time for 1000 Jobs, 256 processes, Scale=5800.

terms of batch completion time, is rather limited. More on that, for the scenario
in Figure 3a that corresponds to an average shape value of 8, it is marginally
worse than the two failure-oblivious approaches (Slurm-linear, RPS ). There are
two main reasons for that. First, for larger scale values of the node’s TTF Weibull
distribution, failures become more rare over time, and thus more shorter jobs
may fit between two successive system failures. Moreover, a batch of 1000 72-hour
long jobs, runs for longer and thus, more errors accumulate during the batch’s
lifetime on the cluster. In such scenarios, there is more room for a failure-aware
approach to show benefit. Figures 3a, 3b also show that with longer jobs the
failure aware resource allocation approach offers notable benefit. For the case
of a batch of 48 hours long jobs and an average shape of 32, it achieves 1.4%
and 1.6% lower batch completion when compared to Slurm-linear and RPS,
respectively. Although this reduction might not seem much, the failure aware
approach achieves to save 768 and 895 hours respectively. The corresponding
improvements are even higher for the case of 72 hours-long jobs (6.3% and 7.3%).
There is another interesting observation regarding the effect of the average shape
parameter. Comparing the benefit of FAPS over RPS, for the scenarios in Figures
3a and 3b, we observe that it is higher for the case of the lower average shape
value. The corresponding benefit is 5.6% for an average shape value of 8, and
5.1% for a value of 32. As Figure 2 shows, smaller shape values imply a more
flattened curve for the TTF distribution which in turns implies that node failures
are more dispersed over time. A larger shape value suggests that TTF samples
are more clustered around the scale value; many nodes are expected to fail in
close-by points in time. Under such conditions, all the partitions explored by
FAPS are expected to have similar failure probabilities, leaving little room for a
beneficial selection. An observation that further supports this assumption is that
the difference in benefit would be larger in a trace with more frequent faults,
where FAPS is more often incapable to find a good partition to assign to a job.
Indeed, Figures 4a, 4b reveal that the benefit of FAPS over RPS is 23.5% for



Exploring the impact of node failures 9

an average shape value of 8 and 79% for the case of 32. Our partition selection
heuristic is a rather simple one, as it does not perform an exhaustive search for
all possible partitions. Consequently, it yields a limited set of partitions in which
FAPS will search for the less probable to fail. We are currently exploring further
the validity of this intuition, and the improvement potential with an enhanced
variant of the partition selection heuristic.

Figures 4a and 4b cover another pair of interesting scenarios. They corre-
spond to traces 1 and 2 in Table 1 and describe a platform with more frequent
failures. For the two different average shape values explored, the corresponding
system MTTF are 1.37 and 1.42 hours, respectively. Following the pattern ob-
served before, for jobs of shorter durations, such as, 4 and 8 hours, the failure
aware resource allocation method achieves the same batch completion time with
the failure oblivious ones. However, FAPS offers a notable benefit even for jobs
with a 24 hour duration. Following the pattern regarding shape’s effect before,
this benefit is larger for the smaller average shape value explored. At the sce-
nario with 48-hour long jobs and an average shape value of 8, FAPS achieves
46.8% and 48.4% lower batch completion time when compared to Slurm-linear
and RPS. This benefit remains significant for the scenario depicted in Figure
4b where the average shape value is larger (32). These results indicate that the
type of jobs (in terms of duration) that benefit from failure-aware resource al-
location is affected by the system failure pattern. In the paragraphs above, we
discussed results from simulation scenarios with 256 process. We have also de-
rived results for scenarios with 512 processes; however, due to space limitations,
the corresponding graphs are omitted. Our results correspond to traces 5 and 6
from Table 1. Again, we observe marginal or not benefit with the failure-aware
resource allocation method for job durations up to 24 hours. For longer jobs and
an average shape value of 8, we observe a more notable benefit. However, for
the larger shape value, the benefit over the failure-oblivious approaches, even
for 72-hour long jobs is limited. We are currently exploring which of two factors
contributes the most to this effect: limited number of partitions enumerated by
our heuristic, and implications of a large shape value on node failures.

4 Related Work

Simulations of parallel applications have been a valuable tool for exploring their
performance and scalability in large scale setups. They also allow to evaluate
applications in setups that are different than the real HPC platforms that are
available, offering the advantages of a controlled and configurable environment.
Towards this direction, several simulators have been proposed. Simgrid [4] allows
the simulation of unmodified applications, while xSim [8] allows running an ap-
plication at a scale of up to millions of concurrent threads. LogGOPSim [8] allows
the simulation of parallel algorithms at large scale relying on an extended version
of the LogGPS model. For systems of growing size and complexity, a large num-
ber of studies have outlined the importance and effect of various failures [16,
23, 21, 3] apart from performance. For mitigating the effect of failures several
approaches have been proposed including checkpoint/restart [14, 27, 25], failure
aware scheduling and resource allocation [5, 13, 30, 10, 18, 11]. The resource allo-



10 I. Vardas et al.

cation approach explored in this study is heavily based on the findings of [12]
and follows a similar path for the resource allocation with [11]. More precisely,
authors in [11] present algorithms that allocate resources for MPI jobs, such that
system reliability is maximized. They take into account the probability of nodes
failing during the execution time of each job. A common approach for evaluating
the effectiveness of fault tolerance mechanisms relies on failure logs and traces
acquired from real HPC systems. It is important though, to be able to evaluate
such approaches in larger scales and under different system configurations and
failure patterns. Towards this direction several studies have proposed simula-
tors aimed at evaluating fault tolerance mechanisms (apart from performance
and scalability). The work in [9] extends xSim [8] adding support to inject MPI
process failures and explore the efficiency of checkpoint/restart. Authors in [24]
discuss a simulator that aims at exploring proactive and reactive fault tolerance
mechanisms, as well as a combination of the two. For its evaluation, they replay
traces from failure logs. With a focus on coordinated and uncoordinated check-
point/restart protocols, authors in [17] suggest a simulation framework based on
LogGOPSim [8]. The work in this study does not target a full system simulator.
Our main focus is on different failure patterns and their effect on resource allo-
cation for parallel jobs. Our key contribution is a configurable mechanism that
generates different traces of node failures.

5 Conclusions and Future Work

This paper is an early exposition of our modeling and simulation approach to-
wards quantifying the impact of node failures on the completion times of MPI
parallel jobs. We generate synthetic traces of node failures in a case study that
assumes a 4D-torus topology and a Weibull distribution for each node’s mean
time between failures. For the synthetic traces explored, benefit is more promi-
nent for the longer jobs. It can be up to 82% depending on the failure trace,
when compared with Slurm and a failure-oblivious heuristic. For shorter jobs,
benefit is notable for systems with more frequent failures.

Our research plan going forward includes more comprehensive case studies for
larger-scale supercomputers incorporating more nodes and more complex inter-
connection topologies (such as 6D-torus and Dragonfly). We also plan to extend
the scheduling logic for concurrent job execution and explore different distribu-
tions for the time to failure. Furthermore, we plan to incorporate node failure
prediction in Slurm, by taking advantage of its software plug-in architecture.
This extension will be building upon the software infrastructure created in our
prior work towards adding failure awareness to resource allocation in Slurm [26].

Acknowledgments

This research has received funding from the European Union’s Horizon 2020/Eu-
roHPC research and innovation programme under grant agreements 955606
(DEEP-SEA) and 754337 (EuroEXA). National contributions from the involved
state members match the EuroHPC funding.



Exploring the impact of node failures 11

References

1. Etp4hpc-sra 4:strategic research agend for high performance computing in europe.
https://www.etp4hpc.eu/pujades/files/ETP4HPC_SRA4_2020_web.pdf

2. Slurm Resource Selection Plugin. https://slurm.schedmd.com/selectplugins.

html
3. Cappello, F., Al, G., Gropp, W., Kale, S., Kramer, B., Snir, M.: Toward exascale

resilience: 2014 update. Supercomput. Front. Innov.: Int. J. 1(1), 5–28 (Apr 2014)
4. Casanova, H., Giersch, A., Legrand, A., Quinson, M., Suter, F.: Versatile, scal-

able, and accurate simulation of distributed applications and platforms. Journal of
Parallel and Distributed Computing 74(10), 2899–2917 (Jun 2014)

5. Dogan, A., Ozguner, F.: Matching and scheduling algorithms for minimizing ex-
ecution time and failure probability of applications in heterogeneous computing.
IEEE Transactions on Parallel and Distributed Systems 13(3), 308–323 (2002)

6. El-Sayed, N., Zhu, H., Schroeder, B.: Learning from failure across multiple clusters:
A trace-driven approach to understanding, predicting, and mitigating job termi-
nations. In: 2017 IEEE 37th International Conference on Distributed Computing
Systems (ICDCS). pp. 1333–1344 (2017)

7. E.N.Elnozahy, Bianchini, R., El-Ghazawi, T., Fox, A., Godfrey, F., Hoisie, A.,
McKinley, K., Melhem, R., Plank, J., Ranganathan, P., Simons, J.: System re-
silience at extreme scale. Tech. rep., Defense Advanced Research Project Agency
(2008)

8. Engelmann, C., Lauer, F.: Facilitating co-design for extreme-scale systems through
lightweight simulation. In: 2010 IEEE International Conference On Cluster Com-
puting Workshops and Posters (CLUSTER WORKSHOPS). pp. 1–8 (2010)

9. Engelmann, C., Naughton, T.: Toward a performance/resilience tool for hardware/-
software co-design of high-performance computing systems. In: 2013 42nd Interna-
tional Conference on Parallel Processing. pp. 960–969 (2013)

10. Fu, S.: Failure-aware resource management for high-availability computing clusters
with distributed virtual machines. J. Parallel Distrib. Comput. 70(4), 384–393 (Apr
2010)

11. Gottumukkala, N.R., Leangsuksun, C.B., Taerat, N., Nassar, R., Scott, S.L.:
Reliability-aware resource allocation in hpc systems. In: 2007 IEEE International
Conference on Cluster Computing. pp. 312–321 (2007)

12. Gottumukkala, N.R., Nassar, R., Paun, M., Leangsuksun, C.B., Scott, S.L.: Reli-
ability of a system of k nodes for high performance computing applications. IEEE
Transactions on Reliability 59(1), 162–169 (2010)

13. Hakem, M., Butelle, F.: Reliability and scheduling on systems subject to failures.
In: 2007 International Conference on Parallel Processing (ICPP 2007). pp. 38–38
(2007)

14. Heien, E., LaPine, D., Kondo, D., Kramer, B., Gainaru, A., Cappello, F.: Mod-
eling and tolerating heterogeneous failures in large parallel systems. In: SC ’11:
Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis. pp. 1–11 (2011)

15. Hyunseung Choo, Seong-Moo Yoo, Hee Yong Youn: Processor scheduling and al-
location for 3d torus multicomputer systems. IEEE Transactions on Parallel and
Distributed Systems 11(5), 475–484 (2000)

16. Jauk, D., Yang, D., Schulz, M.: Predicting faults in high performance computing
systems: An in-depth survey of the state-of-the-practice. In: Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis. pp. 30:1–30:13. SC ’19, ACM, New York, NY, USA (2019)



12 I. Vardas et al.

17. Levy, S., Topp, B., Ferreira, K.B., Arnold, D., Hoefler, T., Widener, P.: Using
simulation to evaluate the performance of resilience strategies at scale. In: Jarvis,
S.A., Wright, S.A., Hammond, S.D. (eds.) High Performance Computing Systems.
Performance Modeling, Benchmarking and Simulation. pp. 91–114. Springer Inter-
national Publishing, Cham (2014)

18. Machida, F., M. Kawato, Maeno, Y.: Redundant virtual machine placement for
fault-tolerant consolidated server clusters. In: 2010 IEEE Network Operations and
Management Symposium - NOMS 2010. pp. 32–39 (2010)

19. Martino, C.D., Kramer, W., Kalbarczyk, Z., Iyer, R.: Measuring and understanding
extreme-scale application resilience: A field study of 5,000,000 hpc application runs.
In: 2015 45th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks. pp. 25–36 (2015)

20. Oliner, A.J., Sahoo, R.K., Moreira, J.E., Gupta, M., Sivasubramaniam, A.: Fault-
aware job scheduling for bluegene/l systems. In: 18th International Parallel and
Distributed Processing Symposium, 2004. Proceedings. pp. 64– (2004)

21. Schroeder, B., Gibson, G.: Understanding failures in petascale computers. Journal
of Physics: Conference Series 78 (09 2007)

22. Schroeder, B., Gibson, G.A.: A large-scale study of failures in high-performance
computing systems. IEEE Transactions on Dependable and Secure Computing
7(4), 337–350 (2010)

23. Snir, M., Wisniewski, R., Abraham, J., Adve, S., Bagchi, S., Balaji, P., Belak, J.,
Bose, P., Cappello, F., Carlson, B., Chien, A., Coteus, P., DeBardeleben, N., Diniz,
P., Engelmann, C., Erez, M., Fazzari, S., Geist, A., Gupta, R., Van Hensbergen, E.:
Addressing failures in exascale computing. ICiS Workshop ANL/MCS-TM-332
(04 2013)

24. Tikotekar, A., Vallee, G., Naughton, T., Scott, S.L., Leangsuksun, C.: Evaluation
of fault-tolerant policies using simulation. In: 2007 IEEE International Conference
on Cluster Computing. pp. 303–311 (2007)

25. Tiwari, D., Gupta, S., Vazhkudai, S.S.: Lazy checkpointing: Exploiting temporal
locality in failures to mitigate checkpointing overheads on extreme-scale systems.
In: 2014 44th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks. pp. 25–36 (2014)

26. Vardas, I., Ploumidis, M., Marazakis, M.: Towards communication profile, topol-
ogy and node failure aware process placement. In: 2020 IEEE 32nd International
Symposium on Computer Architecture and High Performance Computing (SBAC-
PAD). pp. 241–248 (2020)

27. Y. Li, Z. Lan: Exploit failure prediction for adaptive fault-tolerance in cluster
computing. In: Sixth IEEE International Symposium on Cluster Computing and
the Grid (CCGRID’06). vol. 1, pp. 8 pp.–538 (2006)

28. Yigitbasi, N., Gallet, M., Kondo, D., Iosup, A., Epema, D.: Analysis and mod-
eling of time-correlated failures in large-scale distributed systems. In: 2010 11th
IEEE/ACM International Conference on Grid Computing. pp. 65–72 (2010)

29. Yoo, A.B., Jette, M.A., Grondona, M.: Slurm: Simple linux utility for resource man-
agement. In: Feitelson, D., Rudolph, L., Schwiegelshohn, U. (eds.) Job Scheduling
Strategies for Parallel Processing. pp. 44–60. Springer Berlin Heidelberg, Berlin,
Heidelberg (2003)

30. Zhang, Y., Squillante, M.S., Sivasubramaniam, A., Sahoo, R.K.: Performance im-
plications of failures in large-scale cluster scheduling. In: Proceedings of the 10th
International Conference on Job Scheduling Strategies for Parallel Processing. p.
233–252. JSSPP’04, Springer-Verlag, Berlin, Heidelberg (2004)


