001     902826
005     20240725202006.0
024 7 _ |a 10.1016/j.jeurceramsoc.2021.10.018
|2 doi
024 7 _ |a 0955-2219
|2 ISSN
024 7 _ |a 1873-619X
|2 ISSN
024 7 _ |a 2128/29167
|2 Handle
024 7 _ |a altmetric:115936195
|2 altmetric
024 7 _ |a WOS:000722272600001
|2 WOS
037 _ _ |a FZJ-2021-04583
082 _ _ |a 660
100 1 _ |a Li, Xiaoqiang
|0 P:(DE-Juel1)177066
|b 0
|e Corresponding author
245 _ _ |a Oxidation and creep behavior of textured Ti2AlC and Ti3AlC2
260 _ _ |a Amsterdam [u.a.]
|c 2022
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1721884477_5581
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The oxidation and creep behaviors of textured Ti2AlC and Ti3AlC2 ceramics were characterized. The oxidation behavior of the two materials, which was studied in air at temperatures ranging from1000 to 1300 °C, was observed to be anisotropic and the materials exhibited a better oxidation resistance along a direction transverse to the c-axis. The correlation between the overall parabolic rate constant and oxidation temperature of both textured materials was characterized, providing new insights into the oxidation kinetics. The results indicate that the texturing has a negligible influence on the creep behavior in the assessed temperature range of 1000−1200 °C in air, for the applied stresses ranging from 40 to 80 MPa. In this stress regime, the creep behavior of textured Ti2AlC and Ti3AlC2 appears to be controlled by grain boundary sliding. This behavior can be rationalized based on a model for superplastic deformation, indicating pure-shear motion under stationary conditions accommodated by lattice or grain-boundary diffusion.
536 _ _ |a 1242 - Concentrating Solar Power (CSP) (POF4-124)
|0 G:(DE-HGF)POF4-1242
|c POF4-124
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Xie, Xi
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Gonzalez-Julian, Jesus
|0 P:(DE-Juel1)162271
|b 2
700 1 _ |a Yang, Rui
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Schwaiger, Ruth
|0 P:(DE-Juel1)179598
|b 4
700 1 _ |a Malzbender, Jürgen
|0 P:(DE-Juel1)129755
|b 5
773 _ _ |a 10.1016/j.jeurceramsoc.2021.10.018
|g Vol. 42, no. 2, p. 364 - 375
|0 PERI:(DE-600)2013983-4
|n 2
|p 364 - 375
|t Journal of the European Ceramic Society
|v 42
|y 2022
|x 0955-2219
856 4 _ |u https://juser.fz-juelich.de/record/902826/files/Oxidation%20and%20creep%20behavior%20-%20Li.pdf
|y Published on 2021-10-18. Available in OpenAccess from 2023-10-18.
909 C O |o oai:juser.fz-juelich.de:902826
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)177066
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)162271
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)179598
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129755
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-124
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Hochtemperaturtechnologien
|9 G:(DE-HGF)POF4-1242
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-22
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J EUR CERAM SOC : 2021
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-22
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-22
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J EUR CERAM SOC : 2021
|d 2022-11-22
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)IMD-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21