Cold moderator developments for the High Brilliance Neutron Source A. Schwab¹, S. Eisenhut³, Y. Beßler², J. Baggemann¹, P. Zakalek¹, J. Li¹, U. Rücker¹, T. Gutberlet¹, G. Natour², T. Brückel¹ ¹Jülich Centre for Neutron Science, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany ² Central Institute for Engineering, Electronics and Analytics, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany ³Bitzer-Chair of Refrigeration, Cryogenics and Compressor Technology, Technical University of Dresden, 01187 Dresden, Germany ### ZEA-1 | ENGINEERING AND TECHNOLOGY Technology for Excellent Science #### Motivation #### **High Brilliance Neutron Source (HBS):** - <u>Compact Accelerator-driven Neutron Source</u> (CANS) - Production of free neutrons by (p,n)reactions ($E \sim MeV$) - Nano-scale measurements require longwavelength neutrons ($\lambda > 10 \text{ Å}$) - Optimization of moderators (geometry/temperature) to achieve high cold neutron brilliance #### Cold moderator materials - Liquid parahydrogen (l-pH₂) - Solid methane in phase II (s-CH₄) # Cryostat designs #### Moderator plug cryostat(s) - Part of moderator plug (+ shielding & neutron guide) - Interchangeable moderator vessel - Version with two vacuum-insulated transfer lines allows operation of solid cryogenic moderators using LHe and a gas management system ### p-H₂ main cryostat - GM cryocooler (40 W @ 20 K) - Closed-cycle flow system (continuous operation \sim 2 weeks) - Catalyst bed for conversion of orthoto parahydrogen (almost 100% p-H₂) - Positioning by adjustable flange connections and scissors lift ## Target-Moderator-Reflector prototype - Systems are currently being manufactured in workshops of JCNS and ZEA-1 - Planned commissioning in summer 2022 (design by ZEA-1) - Proton beam characteristics: $$E_{p,max} = 45 \text{ MeV}$$ $I_{p,max} = 10 \mu\text{A}$ Operation of solid and liquid cryogenic moderators LH₂ pump Contact: a.schwab@fz-juelich.de