% IMPORTANT: The following is UTF-8 encoded. This means that in the presence % of non-ASCII characters, it will not work with BibTeX 0.99 or older. % Instead, you should use an up-to-date BibTeX implementation like “bibtex8” or % “biber”. @ARTICLE{Engels:902837, author = {Engels, Ralf W.}, title = {{P}olarized fuel: {A} new option for sustained nuclear fusion}, journal = {Research outreach}, volume = {126}, issn = {2517-7028}, address = {Stonehouse}, publisher = {Research Outreach}, reportid = {FZJ-2021-04594}, pages = {10}, year = {2021}, abstract = {The journey towards sustained nuclear fusion may seem never-ending, but some physicists believe a promising step forward could come in the form of ‘polarized fuel’. In his research, Dr Ralf Engels at the Research Centre Jülich / GSI Darmstadt, Germany, together with colleagues at the Polarization Research for Fusion Experiments and Reactors (PREFER) collaboration, has identified three key challenges faced by efforts to implement these advanced fuels. Through a series of future experiments, the team ultimately hopes to bring a practically limitless source of energy a step closer to reality.}, cin = {IKP-2}, ddc = {300}, cid = {I:(DE-Juel1)IKP-2-20111104}, pnm = {612 - Cosmic Matter in the Laboratory (POF4-612)}, pid = {G:(DE-HGF)POF4-612}, typ = {PUB:(DE-HGF)16}, doi = {10.32907/RO-126-1918001166}, url = {https://juser.fz-juelich.de/record/902837}, }