000902841 001__ 902841
000902841 005__ 20220131120403.0
000902841 0247_ $$2doi$$a10.1140/epjc/s10052-020-8032-5
000902841 0247_ $$2ISSN$$a1434-6044
000902841 0247_ $$2ISSN$$a1434-6052
000902841 0247_ $$2Handle$$a2128/29221
000902841 0247_ $$2altmetric$$aaltmetric:76579182
000902841 0247_ $$2WOS$$aWOS:000535136000001
000902841 037__ $$aFZJ-2021-04598
000902841 082__ $$a530
000902841 1001_ $$0P:(DE-HGF)0$$aFerretti, J.$$b0$$eCorresponding author
000902841 245__ $$aQuark structure of the Chi_c(3P) and X(4274) resonances and their strong and radiative decays
000902841 260__ $$aHeidelberg$$bSpringer$$c2020
000902841 3367_ $$2DRIVER$$aarticle
000902841 3367_ $$2DataCite$$aOutput Types/Journal article
000902841 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1638256364_14457
000902841 3367_ $$2BibTeX$$aARTICLE
000902841 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902841 3367_ $$00$$2EndNote$$aJournal Article
000902841 520__ $$aWe calculate the masses of χc(3P) states with threshold corrections in a coupled-channel model. The model was recently applied to the description of the properties of χc(2P) and χb(3P) multiplets (Ferretti and Santopinto in Phys Lett B 789:550, 2019]. We also compute the open-charm strong decay widths of the χc(3P) states and their radiative transitions. According to our predictions, the χc(3P) states should be dominated by the charmonium core, but they may also show small meson-meson components. The X(4274) is interpreted as a cc¯ χc1(3P) state. More information on the other members of the χc(3P) multiplet, as well as a more rigorous analysis of the X(4274)’s decay modes, are needed to provide further indications on the quark structure of the previous resonance.
000902841 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000902841 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902841 7001_ $$0P:(DE-HGF)0$$aSantopinto, E.$$b1
000902841 7001_ $$0P:(DE-Juel1)176611$$aAnwar, M. Naeem$$b2$$eCorresponding author
000902841 7001_ $$0P:(DE-Juel1)190739$$aLu, Yu$$b3$$ufzj
000902841 773__ $$0PERI:(DE-600)1459069-4$$a10.1140/epjc/s10052-020-8032-5$$gVol. 80, no. 5, p. 464$$n5$$p464$$tThe European physical journal / C$$v80$$x1434-6044$$y2020
000902841 8564_ $$uhttps://juser.fz-juelich.de/record/902841/files/Ferretti2020_Article_QuarkStructureOfTheChiMathrmC3.pdf$$yOpenAccess
000902841 909CO $$ooai:juser.fz-juelich.de:902841$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000902841 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176611$$aForschungszentrum Jülich$$b2$$kFZJ
000902841 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190739$$aForschungszentrum Jülich$$b3$$kFZJ
000902841 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000902841 9141_ $$y2021
000902841 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000902841 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000902841 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000902841 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-27
000902841 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR PHYS J C : 2019$$d2021-01-27
000902841 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-27
000902841 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-27
000902841 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000902841 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000902841 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000902841 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27
000902841 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902841 915__ $$0StatID:(DE-HGF)0571$$2StatID$$aDBCoverage$$bSCOAP3 sponsored Journal$$d2021-01-27
000902841 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-27
000902841 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27
000902841 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-27$$wger
000902841 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-27
000902841 915__ $$0StatID:(DE-HGF)0570$$2StatID$$aSCOAP3
000902841 920__ $$lyes
000902841 9201_ $$0I:(DE-Juel1)IAS-4-20090406$$kIAS-4$$lTheorie der Starken Wechselwirkung$$x0
000902841 980__ $$ajournal
000902841 980__ $$aVDB
000902841 980__ $$aUNRESTRICTED
000902841 980__ $$aI:(DE-Juel1)IAS-4-20090406
000902841 9801_ $$aFullTexts