000902846 001__ 902846
000902846 005__ 20230815122846.0
000902846 0247_ $$2doi$$a10.1016/j.advwatres.2021.104010
000902846 0247_ $$2ISSN$$a0309-1708
000902846 0247_ $$2ISSN$$a1872-9657
000902846 0247_ $$2Handle$$a2128/29224
000902846 0247_ $$2altmetric$$aaltmetric:111159856
000902846 0247_ $$2WOS$$aWOS:000696986200008
000902846 037__ $$aFZJ-2021-04603
000902846 082__ $$a550
000902846 1001_ $$0P:(DE-Juel1)184776$$aKeller, Johannes$$b0$$eCorresponding author
000902846 245__ $$aInvestigating the pilot point ensemble Kalman filter for geostatistical inversion and data assimilation
000902846 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2021
000902846 3367_ $$2DRIVER$$aarticle
000902846 3367_ $$2DataCite$$aOutput Types/Journal article
000902846 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1638256923_17592
000902846 3367_ $$2BibTeX$$aARTICLE
000902846 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902846 3367_ $$00$$2EndNote$$aJournal Article
000902846 520__ $$aParameter estimation has a high importance in the geosciences. The ensemble Kalman filter (EnKF) allows parameter estimation for large, time-dependent systems. For large systems, the EnKF is applied using small ensembles, which may lead to spurious correlations and, ultimately, to filter divergence. We present a thorough evaluation of the pilot point ensemble Kalman filter (PP-EnKF), a variant of the ensemble Kalman filter for parameter estimation. In this evaluation, we explicitly state the update equations of the PP-EnKF, discuss the differences of this update equation compared to the update equations of similar EnKF methods, and perform an extensive performance comparison. The performance of the PP-EnKF is tested and compared to the performance of seven other EnKF methods in two model setups, a tracer setup and a well setup. In both setups, the PP-EnKF performs well, ranking better than the classical EnKF. For the tracer setup, the PP-EnKF ranks third out of eight methods. At the same time, the PP-EnKF yields estimates of the ensemble variance that are close to EnKF results from a very large-ensemble reference, suggesting that it is not affected by underestimation of the ensemble variance. In a comparison of the ensemble variances, the PP-EnKF ranks first and third out of eight methods. Additionally, for the well model and ensemble size 50, the PP-EnKF yields correlation structures significantly closer to a reference than the classical EnKF, an indication of the method’s skill to suppress spurious correlations for small ensemble sizes.
000902846 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000902846 536__ $$0G:(GEPRIS)238370553$$aDFG project 238370553 - Ensemble Kalman Filter zur Parameterschätzung in geklüfteten und fluviatilen geothermischen Reservoiren $$c238370553$$x1
000902846 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902846 7001_ $$0P:(DE-Juel1)138662$$aHendricks-Franssen, Harrie-Jan$$b1$$ufzj
000902846 7001_ $$0P:(DE-HGF)0$$aNowak, Wolfgang$$b2
000902846 773__ $$0PERI:(DE-600)2023320-6$$a10.1016/j.advwatres.2021.104010$$gVol. 155, p. 104010 -$$p104010 -$$tAdvances in water resources$$v155$$x0309-1708$$y2021
000902846 8564_ $$uhttps://juser.fz-juelich.de/record/902846/files/2108.02164.pdf$$yOpenAccess
000902846 909CO $$ooai:juser.fz-juelich.de:902846$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000902846 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184776$$aForschungszentrum Jülich$$b0$$kFZJ
000902846 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138662$$aForschungszentrum Jülich$$b1$$kFZJ
000902846 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000902846 9141_ $$y2021
000902846 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-05-04
000902846 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-05-04
000902846 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-05-04
000902846 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-05-04
000902846 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV WATER RESOUR : 2019$$d2021-05-04
000902846 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000902846 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-05-04
000902846 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902846 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-05-04
000902846 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000902846 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-05-04
000902846 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-05-04$$wger
000902846 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-05-04
000902846 920__ $$lyes
000902846 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000902846 980__ $$ajournal
000902846 980__ $$aVDB
000902846 980__ $$aUNRESTRICTED
000902846 980__ $$aI:(DE-Juel1)IBG-3-20101118
000902846 9801_ $$aFullTexts