001     902846
005     20230815122846.0
024 7 _ |a 10.1016/j.advwatres.2021.104010
|2 doi
024 7 _ |a 0309-1708
|2 ISSN
024 7 _ |a 1872-9657
|2 ISSN
024 7 _ |a 2128/29224
|2 Handle
024 7 _ |a altmetric:111159856
|2 altmetric
024 7 _ |a WOS:000696986200008
|2 WOS
037 _ _ |a FZJ-2021-04603
082 _ _ |a 550
100 1 _ |a Keller, Johannes
|0 P:(DE-Juel1)184776
|b 0
|e Corresponding author
245 _ _ |a Investigating the pilot point ensemble Kalman filter for geostatistical inversion and data assimilation
260 _ _ |a Amsterdam [u.a.]
|c 2021
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1638256923_17592
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Parameter estimation has a high importance in the geosciences. The ensemble Kalman filter (EnKF) allows parameter estimation for large, time-dependent systems. For large systems, the EnKF is applied using small ensembles, which may lead to spurious correlations and, ultimately, to filter divergence. We present a thorough evaluation of the pilot point ensemble Kalman filter (PP-EnKF), a variant of the ensemble Kalman filter for parameter estimation. In this evaluation, we explicitly state the update equations of the PP-EnKF, discuss the differences of this update equation compared to the update equations of similar EnKF methods, and perform an extensive performance comparison. The performance of the PP-EnKF is tested and compared to the performance of seven other EnKF methods in two model setups, a tracer setup and a well setup. In both setups, the PP-EnKF performs well, ranking better than the classical EnKF. For the tracer setup, the PP-EnKF ranks third out of eight methods. At the same time, the PP-EnKF yields estimates of the ensemble variance that are close to EnKF results from a very large-ensemble reference, suggesting that it is not affected by underestimation of the ensemble variance. In a comparison of the ensemble variances, the PP-EnKF ranks first and third out of eight methods. Additionally, for the well model and ensemble size 50, the PP-EnKF yields correlation structures significantly closer to a reference than the classical EnKF, an indication of the method’s skill to suppress spurious correlations for small ensemble sizes.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|x 0
|f POF IV
536 _ _ |a DFG project 238370553 - Ensemble Kalman Filter zur Parameterschätzung in geklüfteten und fluviatilen geothermischen Reservoiren
|0 G:(GEPRIS)238370553
|c 238370553
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Hendricks-Franssen, Harrie-Jan
|0 P:(DE-Juel1)138662
|b 1
|u fzj
700 1 _ |a Nowak, Wolfgang
|0 P:(DE-HGF)0
|b 2
773 _ _ |a 10.1016/j.advwatres.2021.104010
|g Vol. 155, p. 104010 -
|0 PERI:(DE-600)2023320-6
|p 104010 -
|t Advances in water resources
|v 155
|y 2021
|x 0309-1708
856 4 _ |u https://juser.fz-juelich.de/record/902846/files/2108.02164.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:902846
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)184776
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)138662
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-05-04
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV WATER RESOUR : 2019
|d 2021-05-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-05-04
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-05-04
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-05-04
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-05-04
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-05-04
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21