Hauptseite > Publikationsdatenbank > Investigating the pilot point ensemble Kalman filter for geostatistical inversion and data assimilation > print |
001 | 902846 | ||
005 | 20230815122846.0 | ||
024 | 7 | _ | |a 10.1016/j.advwatres.2021.104010 |2 doi |
024 | 7 | _ | |a 0309-1708 |2 ISSN |
024 | 7 | _ | |a 1872-9657 |2 ISSN |
024 | 7 | _ | |a 2128/29224 |2 Handle |
024 | 7 | _ | |a altmetric:111159856 |2 altmetric |
024 | 7 | _ | |a WOS:000696986200008 |2 WOS |
037 | _ | _ | |a FZJ-2021-04603 |
082 | _ | _ | |a 550 |
100 | 1 | _ | |a Keller, Johannes |0 P:(DE-Juel1)184776 |b 0 |e Corresponding author |
245 | _ | _ | |a Investigating the pilot point ensemble Kalman filter for geostatistical inversion and data assimilation |
260 | _ | _ | |a Amsterdam [u.a.] |c 2021 |b Elsevier Science |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1638256923_17592 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Parameter estimation has a high importance in the geosciences. The ensemble Kalman filter (EnKF) allows parameter estimation for large, time-dependent systems. For large systems, the EnKF is applied using small ensembles, which may lead to spurious correlations and, ultimately, to filter divergence. We present a thorough evaluation of the pilot point ensemble Kalman filter (PP-EnKF), a variant of the ensemble Kalman filter for parameter estimation. In this evaluation, we explicitly state the update equations of the PP-EnKF, discuss the differences of this update equation compared to the update equations of similar EnKF methods, and perform an extensive performance comparison. The performance of the PP-EnKF is tested and compared to the performance of seven other EnKF methods in two model setups, a tracer setup and a well setup. In both setups, the PP-EnKF performs well, ranking better than the classical EnKF. For the tracer setup, the PP-EnKF ranks third out of eight methods. At the same time, the PP-EnKF yields estimates of the ensemble variance that are close to EnKF results from a very large-ensemble reference, suggesting that it is not affected by underestimation of the ensemble variance. In a comparison of the ensemble variances, the PP-EnKF ranks first and third out of eight methods. Additionally, for the well model and ensemble size 50, the PP-EnKF yields correlation structures significantly closer to a reference than the classical EnKF, an indication of the method’s skill to suppress spurious correlations for small ensemble sizes. |
536 | _ | _ | |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217) |0 G:(DE-HGF)POF4-2173 |c POF4-217 |x 0 |f POF IV |
536 | _ | _ | |a DFG project 238370553 - Ensemble Kalman Filter zur Parameterschätzung in geklüfteten und fluviatilen geothermischen Reservoiren |0 G:(GEPRIS)238370553 |c 238370553 |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Hendricks-Franssen, Harrie-Jan |0 P:(DE-Juel1)138662 |b 1 |u fzj |
700 | 1 | _ | |a Nowak, Wolfgang |0 P:(DE-HGF)0 |b 2 |
773 | _ | _ | |a 10.1016/j.advwatres.2021.104010 |g Vol. 155, p. 104010 - |0 PERI:(DE-600)2023320-6 |p 104010 - |t Advances in water resources |v 155 |y 2021 |x 0309-1708 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/902846/files/2108.02164.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:902846 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)184776 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)138662 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Erde und Umwelt |l Erde im Wandel – Unsere Zukunft nachhaltig gestalten |1 G:(DE-HGF)POF4-210 |0 G:(DE-HGF)POF4-217 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-200 |4 G:(DE-HGF)POF |v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten |9 G:(DE-HGF)POF4-2173 |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-05-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-05-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2021-05-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2021-05-04 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ADV WATER RESOUR : 2019 |d 2021-05-04 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-05-04 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2021-05-04 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2021-05-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-05-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-05-04 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2021-05-04 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-05-04 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IBG-3-20101118 |k IBG-3 |l Agrosphäre |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IBG-3-20101118 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|