
A Middleware Supporting Data Movement in
Complex and Software-Defined Storage and

Memory Architectures

Christopher Haine1, Utz-Uwe Haus1, Maxime Martinasso2, Dirk Pleiter3,4,
François Tessier6, Domokos Sarmany5, Simon Smart5, Tiago Quintino5, and

Adrian Tate7

1 HPE HPC/AI Research Lab, Basel, Switzerland
2 CSCS, Swiss National Supercomputing Centre, 6900 Lugano, Switzerland

3 Forschungszentrum Jülich, 52425 Jülich, Germany
4 KTH, 100 44 Stockholm, Sweden

5 European Centre for Medium-Range Weather Forecasts (ECMWF), Reading RG2
9AX, United Kingdom

6 Inria Rennes Bretagne-Atlantique, 35042, Rennes, France
7 NAG, Oxford, United Kingdom

Abstract. Among the broad variety of challenges that arise from work-
loads in a converged HPC and Cloud infrastructure, data movement is of
paramount importance, especially oncoming exascale systems featuring
multiple tiers of memory and storage. While the focus has, for years, been
primarily on optimizing computations, the importance of improving data
handling on such architectures is now well understood. As optimization
techniques can be applied at different stages (operating system, run-time
system, programming environment, and so on), a middleware providing
a uniform and consistent data awareness becomes necessary. In this pa-
per, we introduce a novel memory- and data-aware middleware called
Maestro, designed for data orchestration.

Keywords: HPC and Cloud infrastructures · Software-defined infras-
tructures · Workflows.

1 Introduction

The multiplicity of emerging memory and storage technologies as well as the
evolution towards converged HPC and Cloud architectures requires that we re-
think the way data is managed. We have seen for years the development of new
types of memory and storage layers on large-scale systems to overcome the data
movement bottleneck. Node-local storage, burst buffer nodes [8] or storage-class
memory [6], to name a few, are now becoming widely available. Those new tiers
come with their own characteristics, whether it is in terms of performance (ca-
pacity, bandwidth, latency) or in terms of access (byte or block addressable) [18].

On the other hand, applications and workflows are becoming dominated by
data movement [13]. The ever-increasing resolution from scientific simulations as



2 C. Haine et al.

well as the diversity of workloads (such as Big Data analytics or AI for instance)
tend to generate a growing amount of data that has to be properly handled
to minimize its impact on performance. For example, the operational weather
forecasting workflow at the European Centre for Medium-Range Weather Fore-
casts (ECMWF) currently generates around 30 TiB per time-critical one-hour
forecast four times per day and estimates that this volume of data produced
will continue increasing by 40% per year [19]. Data-locality requirements are
expected to be a major driver for creating converged infrastructures based on
HPC and Cloud technologies, which have to be highly flexible to support dif-
ferent workflows with a variety of requirements, in particular with respect to
data handling, on top of a complex hardware architecture (see, e.g., the case of
numerical weather prediction [4]).

Therefore, it is useful to develop data movement optimization techniques that
can base their decisions on both the way data is accessed (pattern, I/O method)
and the underlying hardware (memory and storage hierarchy). The variety in the
former poses problems for systems software, and results in an inability to make
use of the semantics of data-movement across the entire software stack. This
constraint could be addressed with a unified data model. On the hardware side,
while it is clear that user-software should not be concerned with non-portable
hardware details, higher-level software making data movement decisions cannot
do so without some form of locality information being available. An approach
is to keep the locality information visible from the user through an abstracted,
hierarchical model providing hardware information to any level of the software
stack consistently.

In order to address the aforementioned challenges, we introduce Maestro, a
memory- and data-aware middleware for data movement orchestration within
workflows. Its central element is a pool of resources that each workflow compo-
nent contributes to. The data, encapsulated in objects along with metadata, is
submitted or requested to/from the pool while the data movements are handled
and optimized by Maestro. In this document in particular, we present the core
data model providing common and consistent access to multiple software layers
regardless of the current location in the memory system.

The key contributions of our work are as follows:

– The design of a memory- and data-aware middleware
– A light-weight annotation- and object-based data model for manipulating

user data
– An API for easily handling objects within and across applications and work-

flows

The outline of this paper is the following. In Section 6, we introduce the state
of the art memory- and data-aware abstractions for optimized data movement.
Then, we introduce in Section 2 the architecture of the Maestro middleware while
we detail both our data abstraction and our data management API in Section 3.
Section 4 is dedicated to an evaluation of our model based on our implementation
of the Maestro middleware. Section 5 puts Maestro in a workflow perspective. We
present early results obtained with a component of a major weather forecasting



A Middleware Supporting Data Movement in Complex Architectures 3

workflow. Finally, we conclude this paper while putting the emphasis on the
limitations of our approach and our future work to resolve them.

2 Architecture

The Maestro middleware is built around the idea that applications should be
empowered to delegate the access and movement of the data they provide and/or
require to a smart middleware. This middleware should then reason about the
system characteristics, data-movement cost, and workflow-level scheduling of
data placement. At the same time, data should not be required to be allocated
in Maestro-defined data structures. Instead, low-overhead annotation of existing
data should be sufficient to inform the middleware and permit it to handle such
application-defined and -managed data.

The Maestro middleware can be understood to provide its features at three
different levels:

– As a data management layer for all memory tiers of a system inside a single
process, e.g. across multiple threads, to use the abstraction of core data
objects (CDOs, detailed in Section 3) to better structure data exchanges
between program parts, across devices (e.g., GPUs), and to use convenient
data transformations provided by the library.

– As a data management layer for all memory tiers of a system across multi-
ple execution domains (compute nodes, processes, workload manager jobs,
and/or allocations), including the coupling of applications by their CDO
dependencies.

– As an enabler of a workflow-management solution, which enables the work-
flow manager to observe and influence data availability, demand, locality,
and transfer without the applications knowing about the workflow they are
embedded within.

To support these features, Maestro is based on an architecture centred around
a CDO pool to (from) which CDOs can be offered (requested). CDOs are man-
aged by the pool on basis of a system model that allows assessing the availability
of storage resources or the costs of data movement as well as data transforma-
tions. The Maestro APIs are defined such that seamless access to various memory
layers is supported.

This architecture supports the following usage patterns:

– Data objects (CDOs) are declared using a workflow-level unique name.
– Attributes (Maestro-specific or user-specific) can be added to each CDO (e.g.

concerning lifetime).
– Data objects are offered to other participants of a workflow or requested

from other participants via a conceptual pool.
– Participants eventually withdraw the object they contributed to the pool
– During the time an object is pooled, and only in this phase, Maestro takes

full control over it; it may move, re-layout, redistribute, or copy the data
as it sees fit across the entire union of resources available to the workflow,
including the resources contributed by participants in the form of CDOs.



4 C. Haine et al.

Maestro being a middleware, its use will be triggered by different means.
The design is catering to these in a consistent way, so that the different usage
scenarios will be able to interact seamlessly.

Application-level usage of Maestro to simplify data management – In this case
a user application, typically a scientific application, will directly use libmaestro
as a library, from C/C++/FORTRAN or a scripting language to take advantage
of the memory management facilities and the feature to offer application data to
unknown consumers, or request data from unknown sources. Other applications
of this use case are compilation tools, compilers implementing advanced data
layout or movement transformations, the implementation of tasking frameworks,
or programming environments like OpenMP, MPI, or UPC.

Workflow-controlled usage of Maestro as a coupling tool – In this case a workflow
description language is used to coordinate the execution of multiple applications,
including resource provisioning. Translation to an execution schedule may occur
statically, or dynamically with the workflow-manager or dedicated watcher com-
ponents observing data-object creation and requests. Using object attributes,
it is possible for the workflow manager to steer the behaviour of the Maestro
middleware; using telemetry information, it is possible to implement feedback
profiling or online re-scheduling or re-resourcing.
This is the usage scenario we believe will be most prevalent for end users: mini-
mal application changes to annotate the core data objects required for coupling
applications will be combined with a powerful workflow description, and execu-
tion strategies will be controlled and tuned at the workflow manager level, with
the middleware in the position to minimize data transfer cost transparently.

On the core middleware side, automatic multi-application rendezvous is im-
plemented with the help of a dedicated pool manager component using libfabric8,
and using a protobuf-based protocol9, avoiding user selection of network inter-
faces, or administrative permissions/daemons.

The pool client component, which is implemented as an in-process Maestro
core instance, is the interface between the application and the pool manager,
which handles API calls that translate into pool protocol, that includes the
CDO management API, and the subsequent network communication towards the
pool manager. A four-step protocol, detailed in Section 3, specifies the way that
an application and Maestro share ownership of data objects. Broadly speaking,
“Give-Take” semantics describe applications giving data objects to Maestro pool
and taking data objects back from Maestro pool. In case of “Take” on a CDO,
be it in a multithreaded context or not, the first check the Maestro middleware
performs is to look-up the presence of the “Taken” CDO in the local pool – the
set of resources tied to the process. If it is indeed present, the ”Take” can be
satisfied promptly without wasting pool manager time. This also allows for a
single application Maestro usage, without the need to launch a dedicated pool
manager application.

8 http://libfabric.org/
9 https://developers.google.com/protocol-buffers



A Middleware Supporting Data Movement in Complex Architectures 5

CDO transport is decoupled from the pool operations, which means CDO
“Take” resolution and layout metadata transfer are decoupled from the actual
CDO content transfer. It makes the pool operations fast, and independent of
CDO storage resource handling, transport methods, and layout transformations.

3 Core Middleware API

A core data object (CDO) combines all available information from both the
hardware/storage side and the software/semantic side. As the most complete
understanding that the middleware can obtain about a particular data object,
the CDO is how applications communicate intentions with Maestro. The CDO
typically represents real data and their physical location (if known).

CDOs possess two binary states that dictate how Maestro can interact with
the CDO

1. ACCESSIBLE defines whether the contents of a CDO can be accessed via
Maestro accessor functions (e.g. elemental/tile set/get).

2. POOLED defines whether a CDO has been given to the Maestro management
pool or not.

These states are used to indicate whether it is the application or Maestro
that is in control of the object. When a CDO is POOLED, Maestro may move,
copy or transform the CDO. When a CDO is ACCESSIBLE, then its content and
structure can be queried by an application, and a set of accessor methods allows
setting and retrieval of the data. If an application creates a POOLED CDO, the
application is relinquishing control of the CDO to the middleware.

CDOs encapsulate additional CDO information or metadata – otherwise re-
ferred to as attributes in Maestro core language. We will refer to the attributes
proposed by default by Maestro core as core attributes, as opposed to user-
defined attributes, which Maestro core supports via schemata, and typically cor-
respond to domain-specific key-value metadata.

A CDO contains optional metadata related to its usage context, such as
access relations and relations to other CDOs. Layout attributes are part of the
core attributes as well, and allow users to add data semantics to Maestro –
either manually or via a static-analysis tool that can infer these attributes and
automatically inject them into the code – in order to take advantage of its
automatic transformations.

An extra API is needed to allow users to add their specific metadata. In
order to incorporate user-defined attributes within CDOs, Maestro core expects
the user to provide a YAML schema that user-defined attribute operations will
have to be compliant with, essentially consisting of a key-value list of possibly
optional keys.

A four-step protocol specifies the way that an application and Maestro share
ownership of data objects. Broadly speaking, “Give-Take” semantics describe
applications giving data objects to Maestro pool and taking data objects back
from Maestro pool. To accommodate the necessary differentiation between data



6 C. Haine et al.

producer and data consumer use cases, “give” and “take” have bilateral coun-
terparts. The overall give-take API is composed of DECLARE, OFFER/REQUIRE,
WITHDRAW/DEMAND/RETRACT, and DISPOSE. They represent four distinct steps in
the lifetime of a CDO as detailed below, namely:

1. CDO declaration,
2. CDO pool injection,
3. CDO pool retraction,
4. CDO disposal.

In all of the operations, CDOs are referred to on the application side by an
application-defined name at DECLARE time, and then referenced by a handle that
corresponds to a (Maestro-internal) object identifier (UUID). Declaration is done
through DECLARE and allows an application to describe a CDO to Maestro. The
application then obtains a handle that will be needed for any future communi-
cation about this object. Maestro can, depending on the object attributes used
in the declaration, allocate resources, prepare and plan for necessary transfers,
schedule other workflow components, etc.

Pool injection is done through OFFER as a producer and REQUIRE as a con-
sumer, the two GIVE variants that take CDO definitions from Maestro to the
CDO Management Pool. After this operation the CDO content may not be ac-
cessed by the application. It is entirely up to Maestro where the CDO content
resides or even whether its content is consistent with any previous or future state.
Maestro can, depending on the object attributes used in the declaration, allo-
cate resources, prepare and plan for necessary transfers, schedule other workflow
components, etc. It can even use the CDO’s storage allocation for other purposes.

Pool retraction is conveyed by WITHDRAW on the producer side, and DEMAND/
RETRACT on the consumer side. “Take” is the moment at which CDO ownership
is transferred (back) to the application. This operation is blocking: Maestro may
choose to delay all operations until this point (permitting lazy CDO handling
semantics).

CDO disposal is done through DISPOSE, which is the inverse of the DECLARE

operation. It indicates the end of the CDO’s lifetime. If resources were provided
by Maestro for the CDO they may be deallocated.

As part of Maestro’s metadata support, it is also possible for a client to
inspect the state and properties of a CDO, such as its attributes or whether it
has been DECLAREDed or OFFERed to the pool. It also allows for user applications
to retrieve CDOs based on their attributes.

4 Performance Evaluation

One of many applications that may greatly benefit from the Maestro middleware
is numerical weather forecasting. The transfer between the data producers of a
time-critical forecast run and the post-processing consumers is the bottleneck
in many global numerical weather forecasting workloads, including the one run
by ECMWF. Its global numerical model, the Integrated Forecast System (IFS),



A Middleware Supporting Data Movement in Complex Architectures 7

outputs its forecast data via a domain-specific I/O library, called multio[17],
which is responsible for routing the data to multiple datasinks, such as the
domain-specific object store FDB [19].

We have created a backend to the multio library that supports data output to
the Maestro core middleware. To simulate the output process without having to
run the actual forecast model, we have also built a tool, called multio-hammer on
top of the multio library. It takes sample data as input and permutes it through
the range of metadata required for a forecast run, thus outputting dummy data
with various sets of metadata. This data is output through the full I/O stack
used in normal operations. In this way it simulates the forecast model from the
I/O perspective.

We aim to evaluate the metadata performance of the Maestro management
API for producer-consumer applications and its support for domain-specific at-
tributes. For this purpose, we have set up a test experiment that communicates
all necessary metadata without initiating any data transfer. The experiment
consists of: a) a user-defined YAML schema of weather-forecasting-specific at-
tributes; b) a pool manager running on one node; c) a single consumer application
running on another node, polling for OFFERed CDOs; and d) various numbers of
multio-hammer instances, each running on a separate node and executing three
forecast steps.

Each forecast step creates 22236 CDOs with unique metadata. We measure,
for each step, the time it takes to create and inject the 22236 CDOs and the time
it takes for the consumer application to inspect all CDOs for possible retrieval.

We have run these tests on a 60-node Atos Linux cluster with Infiniband
interconnects and Slurm submission system. The machine is the prototype and
test machine for the next set of HPC systems that will be used at ECMWF for
both operations and research.

This setup primarily aims to verify part of the Maestro management API that
interfaces with the data producers, although it also uses Maestro’s metadata in-
trospection to verify that communication between the producer and consumer
based on metadata can be established via the pool manager. It measures the
overhead of metadata operations and the interaction with the Maestro middle-
ware API. For every CDO, a producer makes a CDO declaration, sets the core
attributes, sets all the user-defined attributes, seals the CDO declaration, offers
the CDO to the management pool and, finally, disposes of the CDO.

Figure 1a shows for a single time step the time in seconds to create all 22236
CDOs. The steps are grouped according to the number of different nodes on
which an instance of the producer task multio-hammer is running.

In terms of the scaling of metadata operations, the time for the CDO creation
per step goes from around 5s on single node to around 5-8s on 20 nodes. In other
words, it takes at most 60% longer for the pool manager to process 20 times more
data. These numbers roughly corresponds to an overhead of a few percent on top
of the generation of mock data, which in turn is much faster than the generation
of actual data.



8 C. Haine et al.

Figure 1b shows the amounts of times it takes to detect (inspect) all CDOs
produced (OFFERed) by the different number of producers. The measurements
include the acknowledgements sent back to the pool manager that the event has
been handled. The plot indicates linear relation in the range of 1–20 nodes, as
expected. The results from the 20-node setup translate to creating more than
50000 CDOs per second.

1 2 4 8 12 16 20
Number of producer nodes

5.0

5.5

6.0

6.5

7.0

7.5

8.0

Ti
m

e 
sp

en
t c

re
at

in
g 

CD
Os

 fo
r a

 st
ep

(a)

0.2 0.4 0.6 0.8 1.0 1.2
Number of detected CDOs 1e6

2

4

6

8

10

12

14

16

Ti
m

e 
sp

en
t d

et
ec

tin
g 

al
l C

DO
s

(b)

Fig. 1: Time in seconds to complete a single time step, creating 22236 CDOs
per node (left), and to detect (inspect) all CDOs produced in three time steps
(right)

5 Dynamic Provisioning and Workflow Support

To facilitate on-demand availability of storage resources to Maestro-enabled
workflows, one tool has been developed for software-defined provisioning of stor-
age resources. The concept of on-demand storage resources enables a workflow to
deploy a specific data manager or parallel file system into the targeted infrastruc-
ture. To provide higher degree of performance, the selected data manager offers a
specific feature , such as caching, that increases I/O throughput of the workflow.
Moreover, the data manager is deployed on near-compute storage resources.

In a first proof-of-concept, it has been demonstrated how a parallel file
system, e.g. BeeGFS, can be deployed on top of near-compute storage nodes,
e.g. HPE/Cray DataWarp nodes, connected on the same network layer as the
compute nodes [21]. Later, other data managers have been added to demonstrate
the capability of the dynamic provisioning tool. Support of object stores using
MinIO and databases using Cassandra have been added. The design of the dy-
namic provisioning enables an easy integration of other types of data managers
by the usage of containers.

In the next proof-of-concept, we integrated the use of Maestro middleware
and dynamically provided storage resources for workflows based on Pegasus. The



A Middleware Supporting Data Movement in Complex Architectures 9

on-demand data manager is deployed as a job by the batch scheduler installed
on the infrastructure. As Pegasus is using a batch scheduler to execute workflow
tasks, the dynamic provisioning is simply integrated as a new task in a Pegasus
workflow. To create such task, a tool has been developed to semi-automatically
augment workflow descriptions in Pegasus format with information and tasks
that take care of dynamic resource provisioning and start-up of the Maestro
middleware.

6 Related work

Data access relies on two overlapping research topics: data model and API.
New data models have been proposed over the years as architectures have

evolved [23, 15]. HDF5 [5], for instance, provides namespace-like characteristics
to parts of user data, but with an assumption that the data will be stored in a
(potentially virtual) filesystem. With a similar idea but focusing on in-memory
storage, Conduit [3] provides a hierarchical scheme for relating program data
structures to the contents of DRAM, with no means to extend the hierarchy
into the fileystem or to split between, for example, flash and DRAM. Another
related project is ADIOS [12]. ADIOS is an abstraction layer that allows the
user to annotate their I/O operations using an API, but through which a multi-
tude of real I/O libraries, servers and transport layers can be activated. Finally,
NetCDF [9] proposes an abstract data type in the form of arrays and an API
to manipulate the data-structure. Maestro differs from those approaches in that
Maestro is not only focused on I/O but data movement at all levels, I/O in the
application, I/O in the workflow and data movement in the memory system.

Another area relevant to data-models is data stagers. One example is the
DataStager [2] framework, which comprises a client library which provides the
basic methods required for creating data objects and transporting them. At
the crossroads of data models and data stagers, we find research works such as
LABIOS [11]. LABIOS is a distributed I/O system enabling transparent asyn-
chronous I/O on heterogeneous and elastic storage resources. Data is abstracted
in a label, a structure made of a pointer to the data, pointers to functions for
data transformation and metadata. Very similar concepts are realised in Mae-
stro. However, our approach is more general and not limited to asynchronous
data objects in the context of I/O. Another interesting work in that domain,
by Tang et al. [20], proposes to encapsulate scientific data in an object-oriented
manner.

ADIOS2 [7] and XIOS [14] also share some goals with Maestro. ADIOS2, the
Adaptable Input Output System, focuses on asynchronous coupling of applica-
tions by user-defined variables, while XIOS is primarily used as an (XML) I/O-
server build on top of the existing NetCDF data model for weather and climate
simulations. Maestro, by contrast, puts major significance on extensive user-
defined attribute handling, programmatic observability of availability of data
objects, and awareness and handling of the memory hierarchy. Applications do
not need to know how to communicate and transport to other applications in



10 C. Haine et al.

Maestro, and synchronization can be achieved by data objects. This permits
easier composition of Maestro-enabled applications and workflows, including
dynamically changing numbers of producers and consumers. Implementing an
ADIOS2 Engine based on Maestro will be the topic of a future study. Similarly,
it is conceptually possible to implement data transport in XIOS using Maestro
instead of MPI.

Unity [10] also shares philosophical intentions with Maestro, being an at-
tempt to unify the memory and storage spaces. Its focus is on data-intensive
processing and mixed workloads and the close integration of HPC with data
analytics. At a lower level, Perarneau et al. [16] and Unat et al. [22] have been
working on low-level abstraction of data layout in memory. Work on SharP also
brings a low-level abstraction layer for data management [24].

The Maestro design uses similar concepts to some of these projects – it uses
HDF5-like namespacing, it abstracts I/O like ADIOS, it provides a unified mem-
ory/storage scheme like Unity and it also provides common data models to differ-
ent components. However, while many of the mentioned projects are an explicit
API, Maestro differs from each of the data models in that it is a middleware layer
designed to be used in a variety of environments. It provides an API but can be
used in other ways and users can avoid using any explicit calls to the Maestro
library if preferred. Maestro therefore has the potential to provide better legacy
support than most of these libraries, but also serve as a powerful foundation for
new software and frameworks.

7 Conclusion

Taking into account the movements of data on current and future architectures
is crucial. The increasing amount of data generated by scientific applications
and workflows is concomitant with a relative decline in I/O performance on
supercomputers. However, the HPC software stack was not designed with this
in mind.

In this paper, we present the data model and API at the base of the Maestro
middleware whose goal is to orchestrate data movement. In particular, we detail
a model based on the encapsulation of data and metadata into objects as well as
its data-access semantics. The preliminary results are encouraging and confirm
our approach. A test experiment based on the production of weather-forecast
data has shown that the Maestro middleware is able to handle the injection of
more than 50000 CDOs/s (together with their domain-specific metadata) on a
20-node setup. This represents an overhead of just a few percent on top of the
generation of mock data, which we deem on track to meet the future objective
of scaling to an operational configuration.

For the metadata communication presented in this paper, libfabric high-speed
interconnect has already been used. Work is ongoing to implement a Maestro
I/O (MIO) interface as an abstraction layer to different object store technologies.
It initially focuses on Cortx [1], later it will be extended to Ceph using the
RADOS [25] service.



A Middleware Supporting Data Movement in Complex Architectures 11

References

1. CORTX object store. https://github.com/Seagate/cortx
2. Abbasi, H., Wolf, M., Eisenhauer, G., Klasky, S., Schwan, K., Zheng, F.:

Datastager: Scalable data staging services for petascale applications. Cluster Com-
puting 13, 277–290 (06 2009). https://doi.org/10.1007/s10586-010-0135-6

3. Aspesi, G., Bai, J., Deese, R., Shin, L.: Havery mudd 2014-
2015 computer science conduit clinic final report (5 2015).
https://doi.org/10.2172/1184132, https://www.osti.gov/biblio/

1184132-havery-mudd-computer-science-conduit-clinic-final-report

4. Bauer, P., Dueben, P.D., Hoefler, T., Quintino, T., Schulthess, T.C., Wedi, N.P.:
The digital revolution of earth-system science. Nature Computational Science 1(2),
104–113 (Feb 2021). https://doi.org/10.1038/s43588-021-00023-0, https://doi.

org/10.1038/s43588-021-00023-0

5. Folk, M., Heber, G., Koziol, Q., Pourmal, E., Robinson, D.: An overview of the
hdf5 technology suite and its applications. In: Proceedings of the EDBT/ICDT
2011 Workshop on Array Databases. p. 36–47. AD ’11, Association for Computing
Machinery, New York, NY, USA (2011). https://doi.org/10.1145/1966895.1966900,
https://doi.org/10.1145/1966895.1966900

6. Freitas, R.F., Wilcke, W.W.: Storage-class memory: The next storage system tech-
nology. IBM Journal of Research and Development 52(4.5), 439–447 (2008)

7. Godoy, W.F., Podhorszki, N., Wang, R., Atkins, C., Eisenhauer, G., Gu, J.,
Davis, P., Choi, J., Germaschewski, K., Huck, K., Huebl, A., Kim, M., Kress,
J., Kurc, T., Liu, Q., Logan, J., Mehta, K., Ostrouchov, G., Parashar, M.,
Poeschel, F., Pugmire, D., Suchyta, E., Takahashi, K., Thompson, N., Tsutsumi,
S., Wan, L., Wolf, M., Wu, K., Klasky, S.: Adios 2: The adaptable input out-
put system. a framework for high-performance data management. SoftwareX 12,
100561 (2020). https://doi.org/https://doi.org/10.1016/j.softx.2020.100561, http:
//www.sciencedirect.com/science/article/pii/S2352711019302560

8. Henseler, D., Landsteiner, B., Petesch, D., Wright, C., Wright, N.J.: Architecture
and design of Cray DataWarp. In: Proceedings of 2016 Cray User Group (CUG)
Meeting (2016)

9. Jianwei Li, Wei-keng Liao, Choudhary, A., Ross, R., Thakur, R., Gropp, W.,
Latham, R., Siegel, A., Gallagher, B., Zingale, M.: Parallel netCDF: A High-
Performance Scientific I/O Interface. In: SC ’03: Proceedings of the 2003
ACM/IEEE Conference on Supercomputing. pp. 39–39 (2003)

10. Jones, T., Brim, M.J., Vallee, G., Mayer, B., Welch, A., Li, T., Lang, M., Ionkov,
L., Otstott, D., Gavrilovska, A., et al.: Unity: unified memory and file space. In:
Proceedings of the 7th International Workshop on Runtime and Operating Systems
for Supercomputers ROSS 2017. pp. 1–8 (2017)

11. Kougkas, A., Devarajan, H., Lofstead, J., Sun, X.H.: LABIOS: A Dis-
tributed Label-Based I/O System. In: Proceedings of the 28th Interna-
tional Symposium on High-Performance Parallel and Distributed Comput-
ing. p. 13–24. HPDC ’19, Association for Computing Machinery, New York,
NY, USA (2019). https://doi.org/10.1145/3307681.3325405, https://doi.org/

10.1145/3307681.3325405

12. Liu, Q., Logan, J., Tian, Y., Abbasi, H., Podhorszki, N., Choi, J.Y., Klasky,
S., Tchoua, R., Lofstead, J., Oldfield, R., Parashar, M., Samatova, N., Schwan,
K., Shoshani, A., Wolf, M., Wu, K., Yu, W.: Hello ADIOS: The Chal-
lenges and Lessons of Developing Leadership Class I/O Framework. Concur-



12 C. Haine et al.

rency and Computation: Practice and Experience 26(7), 1453–1473 (May 2014).
https://doi.org/10.1002/cpe.3125, https://doi.org/10.1002/cpe.3125

13. Luu, H., Winslett, M., Gropp, W., Ross, R., Carns, P., Harms, K.,
Prabhat, M., Byna, S., Yao, Y.: A Multiplatform Study of I/O Behav-
ior on Petascale Supercomputers. In: Proceedings of the 24th International
Symposium on High-Performance Parallel and Distributed Computing. p.
33–44. HPDC ’15, Association for Computing Machinery, New York, NY,
USA (2015). https://doi.org/10.1145/2749246.2749269, https://doi.org/10.

1145/2749246.2749269
14. Meurdesoif, Y.: XIOS current developments and roadmap. https:

//forge.ipsl.jussieu.fr/ioserver/raw-attachment/wiki/WikiStart/

XIOS-ROADMAP-15102020.pdf (2020)
15. Otstott, D., Zhao, M., Williams, S., Ionkov, L., Lang, M.: A foundation for auto-

mated placement of data. In: 2019 IEEE/ACM Fourth International Parallel Data
Systems Workshop (PDSW). pp. 50–59 (2019)

16. Perarnau, S., Videau, B., Denoyelle, N., Monna, F., Iskra, K., Beckman, P.: Ex-
plicit data layout management for autotuning exploration on complex memory
topologies. In: 2019 IEEE/ACM Workshop on Memory Centric High Performance
Computing (MCHPC). pp. 58–63 (2019)

17. Quintino, T., Smart, S., Sarmany, D.: MultIO – a multiplexing I/O library. https:
//github.com/ecmwf/multio

18. Ross, R., Ward, L., Carns, P., Grider, G., Klasky, S., Koziol, Q., Lockwood, G.K.,
Mohror, K., Settlemyer, B., Wolf, M.: Storage Systems and I/O: Organizing, Stor-
ing, and Accessing Data for Scientific Discovery. Report for the DOE ASCR Work-
shop on Storage Systems and I/O (9 2018). https://doi.org/10.2172/1491994

19. Smart, S., Quintino, T., Raoult, B.: A high-performance distributed object-store for
exascale numerical weather prediction and climate. In: Proceedings of the Platform
for Advanced Scientific Computing Conference. pp. 1–11 (2019)

20. Tang, H., Byna, S., Tessier, F., Wang, T., Dong, B., Mu, J., Koziol, Q., Soumagne,
J., Vishwanath, V., Liu, J., Warren, R.: Toward scalable and asynchronous object-
centric data management for hpc. In: 2018 18th IEEE/ACM International Sym-
posium on Cluster, Cloud and Grid Computing (CCGRID). pp. 113–122 (2018)

21. Tessier, F., Martinasso, M., Chesi, M., Klein, M., Gila, M.: Dynamic provisioning
of storage resources: A case study with burst buffers. In: 2020 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW). pp. 1027–
1035 (2020). https://doi.org/10.1109/IPDPSW50202.2020.00173

22. Unat, D., Nguyen, T., Zhang, W., Farooqi, M.N., Bastem, B., Michelogiannakis, G.,
Almgren, A., Shalf, J.: Tida: High-level programming abstractions for data locality
management. In: Kunkel, J.M., Balaji, P., Dongarra, J. (eds.) High Performance
Computing. pp. 116–135. Springer International Publishing, Cham (2016)

23. Unat, D., Shalf, J., Hoefler, T., Schulthess, T., (Editors), A.D., Besta, M., , et al.:
Programming Abstractions for Data Locality. Tech. rep. (04 2014)

24. Venkata, M.G., Aderholdt, F., Parchman, Z.: Sharp: Towards programming
extreme-scale systems with hierarchical heterogeneous memory. In: 2017 46th In-
ternational Conference on Parallel Processing Workshops (ICPPW). pp. 145–154
(2017)

25. Weil, S.A., Leung, A.W., Brandt, S.A., Maltzahn, C.: Rados: a scalable, reliable
storage service for petabyte-scale storage clusters. In: Proceedings of the 2nd in-
ternational workshop on Petascale data storage: held in conjunction with Super-
computing’07. pp. 35–44 (2007)


