000902902 001__ 902902
000902902 005__ 20240712113125.0
000902902 0247_ $$2doi$$a10.1002/smll.202104130
000902902 0247_ $$2ISSN$$a1613-6810
000902902 0247_ $$2ISSN$$a1613-6829
000902902 0247_ $$2Handle$$a2128/29384
000902902 0247_ $$2altmetric$$aaltmetric:115039471
000902902 0247_ $$2pmid$$apmid:34636147
000902902 0247_ $$2WOS$$aWOS:000705988100001
000902902 037__ $$aFZJ-2021-04657
000902902 082__ $$a540
000902902 1001_ $$0P:(DE-HGF)0$$aBärmann, Peer$$b0$$eCorresponding author
000902902 245__ $$aSolvent Co‐Intercalation‐Induced Activation and Capacity Fade Mechanism of Few‐/Multi‐Layered MXenes in Lithium Ion Batteries
000902902 260__ $$aWeinheim$$bWiley-VCH$$c2021
000902902 3367_ $$2DRIVER$$aarticle
000902902 3367_ $$2DataCite$$aOutput Types/Journal article
000902902 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1638958277_20054
000902902 3367_ $$2BibTeX$$aARTICLE
000902902 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902902 3367_ $$00$$2EndNote$$aJournal Article
000902902 520__ $$aMXenes attract tremendous research efforts since their discovery in 2011 due to their unique physical and chemical properties, allowing for application in various fields. One of them is electrochemical energy storage due to their pseudocapacitive (=redox) behavior, high electronic conductivity, and charge storage versatility regarding the cationic species (e.g., Li+). MXenes typically display stable charge/discharge cycling behavior over hundreds of cycles in numerous electrolytes, however, a drastic loss of reversible capacity is detectable during the initial cycles. Furthermore, an electrochemical “activation” is also reported in the literature, especially for free-standing electrodes. Here, these electrochemical phenomena are investigated by electrochemical and analytical means to decipher the responsible mechanism by comparing few-layered and multi-layered Ti3C2Tx. A change in the pseudocapacitive behavior of MXenes during cycling can be explained by in situ X-ray diffraction studies, revealing solvent co-intercalation in the first cycle for the morphologically different MXenes. This co-intercalation is responsible for the capacity decay detected in the first cycles and is also responsible for the ongoing “activation” occurring in later cycles.
000902902 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000902902 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902902 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b1$$ufzj
000902902 7001_ $$0P:(DE-Juel1)162271$$aGonzalez-Julian, Jesus$$b2$$ufzj
000902902 7001_ $$00000-0002-2097-5193$$aPlacke, Tobias$$b3$$eCollaboration author
000902902 773__ $$0PERI:(DE-600)2168935-0$$a10.1002/smll.202104130$$gVol. 17, no. 47, p. 2104130 -$$n47$$p2104130 -$$tSmall$$v17$$x1613-6810$$y2021
000902902 8564_ $$uhttps://juser.fz-juelich.de/record/902902/files/Preprint.pdf$$yOpenAccess
000902902 8564_ $$uhttps://juser.fz-juelich.de/record/902902/files/smll.202104130.pdf$$yOpenAccess
000902902 909CO $$ooai:juser.fz-juelich.de:902902$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000902902 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b0$$kExtern
000902902 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b1$$kFZJ
000902902 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162271$$aForschungszentrum Jülich$$b2$$kFZJ
000902902 9101_ $$0I:(DE-HGF)0$$60000-0002-2097-5193$$aExternal Institute$$b3$$kExtern
000902902 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000902902 9141_ $$y2021
000902902 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000902902 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27
000902902 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000902902 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-27
000902902 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-27$$wger
000902902 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000902902 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bSMALL : 2019$$d2021-01-27
000902902 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000902902 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902902 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSMALL : 2019$$d2021-01-27
000902902 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000902902 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000902902 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000902902 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x1
000902902 9801_ $$aFullTexts
000902902 980__ $$ajournal
000902902 980__ $$aVDB
000902902 980__ $$aUNRESTRICTED
000902902 980__ $$aI:(DE-Juel1)IEK-1-20101013
000902902 980__ $$aI:(DE-Juel1)IEK-12-20141217
000902902 981__ $$aI:(DE-Juel1)IMD-4-20141217
000902902 981__ $$aI:(DE-Juel1)IMD-2-20101013