000902912 001__ 902912
000902912 005__ 20220930130332.0
000902912 0247_ $$2doi$$a10.1186/s12934-021-01663-7
000902912 0247_ $$2Handle$$a2128/29196
000902912 0247_ $$2altmetric$$aaltmetric:113332785
000902912 0247_ $$2pmid$$apmid:34488765
000902912 0247_ $$2WOS$$aWOS:000693256700003
000902912 037__ $$aFZJ-2021-04667
000902912 082__ $$a570
000902912 1001_ $$0P:(DE-Juel1)171683$$aLenz, Patrick$$b0
000902912 245__ $$aThe iSplit GFP assay detects intracellular recombinant proteins in Bacillus subtilis
000902912 260__ $$aLondon$$bBiomed Central$$c2021
000902912 3367_ $$2DRIVER$$aarticle
000902912 3367_ $$2DataCite$$aOutput Types/Journal article
000902912 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1643695552_22786
000902912 3367_ $$2BibTeX$$aARTICLE
000902912 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902912 3367_ $$00$$2EndNote$$aJournal Article
000902912 520__ $$aBackgroundBacillus subtilis is one of the most important microorganisms for recombinant protein production. It possesses the GRAS (generally recognized as safe) status and a potent protein secretion capacity. Secretory protein production greatly facilitates downstream processing and thus significantly reduces costs. However, not all heterologous proteins are secreted and intracellular production poses difficulties for quantification. To tackle this problem, we have established a so-called intracellular split GFP (iSplit GFP) assay in B. subtilis as a tool for the in vivo protein detection during expression in batch cultures and at a single-cell level. For the iSplit GFP assay, the eleventh β-sheet of sfGFP is fused to a target protein and can complement a detector protein consisting of the respective truncated sfGFP (GFP1-10) to form fluorescent holo-GFP.ResultsAs proof of concept, the GFP11-tag was fused C-terminally to the E. coli β-glucuronidase GUS, resulting in fusion protein GUS11. Variable GUS and GUS11 production levels in B. subtilis were achieved by varying the ribosome binding site via spacers of increasing lengths (4–12 nucleotides) for the GUS-encoding gene. Differences in intracellular enzyme accumulation were determined by measuring the GUS11 enzymatic activity and subsequently by adding the detector protein to respective cell extracts. Moreover, the detector protein was co-produced with the GUS11 using a two-plasmid system, which enabled the in vivo detection and online monitoring of glucuronidase production. Using this system in combination with flow cytometry and microfluidics, we were able to monitor protein production at a single-cell level thus yielding information about intracellular protein distribution and culture heterogeneity.ConclusionOur results demonstrate that the iSplit GFP assay is suitable for the detection, quantification and online monitoring of recombinant protein production in B. subtilis during cultivation as well as for analyzing production heterogeneity and intracellular localization at a single-cell level.
000902912 536__ $$0G:(DE-HGF)POF4-2172$$a2172 - Utilization of renewable carbon and energy sources and engineering of ecosystem functions (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000902912 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902912 7001_ $$0P:(DE-Juel1)167181$$aHilgers, Fabienne$$b1
000902912 7001_ $$0P:(DE-HGF)0$$aBurmeister, Alina$$b2
000902912 7001_ $$0P:(DE-Juel1)178678$$aZimmermann, Leonie$$b3
000902912 7001_ $$0P:(DE-HGF)0$$aVolkenborn, Kristina$$b4
000902912 7001_ $$0P:(DE-Juel1)143612$$aGrünberger, Alexander$$b5
000902912 7001_ $$0P:(DE-Juel1)140195$$aKohlheyer, Dietrich$$b6
000902912 7001_ $$0P:(DE-Juel1)131426$$aDrepper, Thomas$$b7
000902912 7001_ $$0P:(DE-Juel1)131457$$aJaeger, Karl-Erich$$b8
000902912 7001_ $$0P:(DE-Juel1)131469$$aKnapp, Andreas$$b9$$eCorresponding author
000902912 773__ $$0PERI:(DE-600)2091377-1$$a10.1186/s12934-021-01663-7$$gVol. 20, no. 1, p. 174$$n1$$p174$$tMicrobial cell factories$$v20$$x1475-2859$$y2021
000902912 8564_ $$uhttps://juser.fz-juelich.de/record/902912/files/s12934-021-01663-7.pdf$$yOpenAccess
000902912 8767_ $$8SN-2021-00708-b$$92021-12-07$$d2021-12-07$$eAPC$$jDEAL$$lDEAL: Springer$$zBelegnr.: 1200174041
000902912 909CO $$ooai:juser.fz-juelich.de:902912$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$popenCost$$pdnbdelivery
000902912 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171683$$aForschungszentrum Jülich$$b0$$kFZJ
000902912 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167181$$aForschungszentrum Jülich$$b1$$kFZJ
000902912 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178678$$aForschungszentrum Jülich$$b3$$kFZJ
000902912 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140195$$aForschungszentrum Jülich$$b6$$kFZJ
000902912 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131426$$aForschungszentrum Jülich$$b7$$kFZJ
000902912 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131457$$aForschungszentrum Jülich$$b8$$kFZJ
000902912 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131469$$aForschungszentrum Jülich$$b9$$kFZJ
000902912 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2172$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000902912 9141_ $$y2021
000902912 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000902912 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-05-04
000902912 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000902912 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-05-04
000902912 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-05-04
000902912 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-05-04
000902912 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMICROB CELL FACT : 2019$$d2021-05-04
000902912 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-04
000902912 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-04
000902912 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000902912 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000902912 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-05-04
000902912 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-05-04
000902912 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902912 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-05-04
000902912 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000902912 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-05-04
000902912 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-05-04
000902912 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-05-04
000902912 920__ $$lyes
000902912 9201_ $$0I:(DE-Juel1)IMET-20090612$$kIMET$$lInstitut für Molekulare Enzymtechnologie (HHUD)$$x0
000902912 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x1
000902912 980__ $$ajournal
000902912 980__ $$aVDB
000902912 980__ $$aI:(DE-Juel1)IMET-20090612
000902912 980__ $$aI:(DE-Juel1)IBG-1-20101118
000902912 980__ $$aAPC
000902912 980__ $$aUNRESTRICTED
000902912 9801_ $$aAPC
000902912 9801_ $$aFullTexts