000902918 001__ 902918
000902918 005__ 20240313103132.0
000902918 0247_ $$2doi$$a10.3389/fninf.2021.723406
000902918 0247_ $$2Handle$$a2128/29256
000902918 0247_ $$2altmetric$$aaltmetric:113551412
000902918 0247_ $$2pmid$$a34603002
000902918 0247_ $$2WOS$$aWOS:000702048700001
000902918 037__ $$aFZJ-2021-04673
000902918 082__ $$a610
000902918 1001_ $$0P:(DE-HGF)0$$aPorrmann, Florian$$b0$$eCorresponding author
000902918 245__ $$aAcceleration of the SPADE Method Using a Custom-Tailored FP-Growth Implementation
000902918 260__ $$aLausanne$$bFrontiers Research Foundation$$c2021
000902918 3367_ $$2DRIVER$$aarticle
000902918 3367_ $$2DataCite$$aOutput Types/Journal article
000902918 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1638365377_13204
000902918 3367_ $$2BibTeX$$aARTICLE
000902918 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902918 3367_ $$00$$2EndNote$$aJournal Article
000902918 520__ $$aThe SPADE (spatio-temporal Spike PAttern Detection and Evaluation) method was developed to find reoccurring spatio-temporal patterns in neuronal spike activity (parallel spike trains). However, depending on the number of spike trains and the length of recording, this method can exhibit long runtimes. Based on a realistic benchmark data set, we identified that the combination of pattern mining (using the FP-Growth algorithm) and the result filtering account for 85–90% of the method's total runtime. Therefore, in this paper, we propose a customized FP-Growth implementation tailored to the requirements of SPADE, which significantly accelerates pattern mining and result filtering. Our version allows for parallel and distributed execution, and due to the improvements made, an execution on heterogeneous and low-power embedded devices is now also possible. The implementation has been evaluated using a traditional workstation based on an Intel Broadwell Xeon E5-1650 v4 as a baseline. Furthermore, the heterogeneous microserver platform RECS|Box has been used for evaluating the implementation on two HiSilicon Hi1616 (Kunpeng 916), an Intel Coffee Lake-ER Xeon E-2276ME, an Intel Broadwell Xeon D-D1577, and three NVIDIA Tegra devices (Jetson AGX Xavier, Jetson Xavier NX, and Jetson TX2). Depending on the platform, our implementation is between 27 and 200 times faster than the original implementation. At the same time, the energy consumption was reduced by up to two orders of magnitude.
000902918 536__ $$0G:(DE-HGF)POF4-5231$$a5231 - Neuroscientific Foundations (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000902918 536__ $$0G:(DE-HGF)POF4-5235$$a5235 - Digitization of Neuroscience and User-Community Building (POF4-523)$$cPOF4-523$$fPOF IV$$x1
000902918 536__ $$0G:(EU-Grant)957197$$aVEDLIoT - Very Efficient Deep Learning in IOT (957197)$$c957197$$fH2020-ICT-2020-1$$x2
000902918 536__ $$0G:(EU-Grant)780681$$aLEGaTO - Low Energy Toolset for Heterogeneous Computing (780681)$$c780681$$fH2020-ICT-2017-1$$x3
000902918 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x4
000902918 536__ $$0G:(DE-HGF)ZT-I-0003$$aHAF - Helmholtz Analytics Framework (ZT-I-0003)$$cZT-I-0003$$x5
000902918 536__ $$0G:(DE-Juel1)jinb33_20191101$$aBrain-Scale Simulations (jinb33_20191101)$$cjinb33_20191101$$fBrain-Scale Simulations$$x6
000902918 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902918 7001_ $$0P:(DE-HGF)0$$aPilz, Sarah$$b1
000902918 7001_ $$0P:(DE-Juel1)171932$$aStella, Alessandra$$b2
000902918 7001_ $$0P:(DE-Juel1)176920$$aKleinjohann, Alexander$$b3
000902918 7001_ $$0P:(DE-Juel1)144807$$aDenker, Michael$$b4
000902918 7001_ $$0P:(DE-HGF)0$$aHagemeyer, Jens$$b5
000902918 7001_ $$0P:(DE-HGF)0$$aRückert, Ulrich$$b6
000902918 773__ $$0PERI:(DE-600)2452979-5$$a10.3389/fninf.2021.723406$$gVol. 15, p. 723406$$p723406$$tFrontiers in neuroinformatics$$v15$$x1662-5196$$y2021
000902918 8564_ $$uhttps://juser.fz-juelich.de/record/902918/files/fninf-15-723406.pdf$$yOpenAccess
000902918 909CO $$ooai:juser.fz-juelich.de:902918$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000902918 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171932$$aForschungszentrum Jülich$$b2$$kFZJ
000902918 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)171932$$aRWTH Aachen$$b2$$kRWTH
000902918 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176920$$aForschungszentrum Jülich$$b3$$kFZJ
000902918 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)176920$$aRWTH Aachen$$b3$$kRWTH
000902918 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144807$$aForschungszentrum Jülich$$b4$$kFZJ
000902918 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5231$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000902918 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5235$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x1
000902918 9141_ $$y2021
000902918 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-05-04
000902918 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000902918 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-05-04
000902918 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-05-04
000902918 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000902918 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902918 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT NEUROINFORM : 2019$$d2021-05-04
000902918 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-04
000902918 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-04
000902918 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2021-05-04
000902918 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000902918 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-05-04
000902918 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-05-04
000902918 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000902918 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-05-04
000902918 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000902918 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-05-04
000902918 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-05-04
000902918 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-05-04
000902918 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000902918 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x1
000902918 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x2
000902918 9801_ $$aFullTexts
000902918 980__ $$ajournal
000902918 980__ $$aVDB
000902918 980__ $$aUNRESTRICTED
000902918 980__ $$aI:(DE-Juel1)INM-6-20090406
000902918 980__ $$aI:(DE-Juel1)INM-10-20170113
000902918 980__ $$aI:(DE-Juel1)IAS-6-20130828
000902918 981__ $$aI:(DE-Juel1)IAS-6-20130828