001     902927
005     20211205011654.0
024 7 _ |a 10.1016/j.scitotenv.2021.148080
|2 doi
024 7 _ |a 0048-9697
|2 ISSN
024 7 _ |a 1879-1026
|2 ISSN
024 7 _ |a 2128/29200
|2 Handle
024 7 _ |a altmetric:109304227
|2 altmetric
024 7 _ |a pmid:34126496
|2 pmid
037 _ _ |a FZJ-2021-04680
082 _ _ |a 610
100 1 _ |a Bieroza, M. Z.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a What is the deal with the Green Deal: Will the new strategy help to improve European freshwater quality beyond the Water Framework Directive?
260 _ _ |a Amsterdam [u.a.]
|c 2021
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1638251081_14457
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Agricultural land use covers almost half of the EU territory and reducing nutrient and pesticide losses to freshwaters is central to existing EU policy. However, the progress of improving freshwater quality and reducing eutrophication is slow and lags behind targets. The Green Deal is a key element of the EU plans to implement the United Nation's Sustainable Development Goals. Here, we discuss the opportunities that the Green Deal and associated strategies may provide for the achievement of the water quality goals of the Water Framework Directive in agricultural landscapes. We welcome Green Deal's aspirational stated goals. However, the reliance of mitigation of diffuse agricultural pollution on the reform of the Common Agricultural Policy represents grave risks for practical implementation and the achievement of the Green Deal objectives. We also argue that the new strategies should be targeted at tackling and understanding the sources of water quality problems along the full pollution continuum. To maximise the opportunities for tackling diffuse pollution from agricultural land use and achieving the delayed water quality targets, we stress that a range of targeted new instruments will be needed to close the gaps in the pollution continuum ‘from source to impact’. These gaps include: (I) smart and standardised monitoring of the impacts of proposed eco-schemes and agri-environment-climate measures, (ii) active restoration of agricultural streams and ditches and their floodplains to reduce secondary pollution sources, (iii) options to draw down nutrient levels to or below the agronomic optimum that reduce legacy sources, (iv) integrating farm-scale and catchment-scale analysis of trade-offs in reducing different pollutants and their combined effects, and finally (v) accounting for emerging pressures to freshwater quality due to climate change. Incorporation of the pollution continuum framework into tackling diffuse agricultural pollution will ensure that the European water-related policy goals are achieved.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Bol, R.
|0 P:(DE-Juel1)145865
|b 1
700 1 _ |a Glendell, M.
|0 P:(DE-HGF)0
|b 2
773 _ _ |a 10.1016/j.scitotenv.2021.148080
|g Vol. 791, p. 148080 -
|0 PERI:(DE-600)1498726-0
|p 148080 -
|t The science of the total environment
|v 791
|y 2021
|x 0048-9697
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/902927/files/1-s2.0-S004896972103151X-main.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/902927/files/BierozaStotenRB.pdf
909 C O |o oai:juser.fz-juelich.de:902927
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)145865
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-28
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI TOTAL ENVIRON : 2019
|d 2021-01-28
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b SCI TOTAL ENVIRON : 2019
|d 2021-01-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-28
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-28
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21