001     902928
005     20220930130332.0
024 7 _ |a 10.1029/2021EA001790
|2 doi
024 7 _ |a 2128/29670
|2 Handle
024 7 _ |a WOS:000734382000020
|2 WOS
037 _ _ |a FZJ-2021-04681
082 _ _ |a 550
100 1 _ |a Dal Bo, Igor
|0 P:(DE-Juel1)168555
|b 0
245 _ _ |a GPR and EMI characterization of the hyperarid study site of Yungay, Chile: Implications of applying geophysical methods on Mars
260 _ _ |a Malden, Mass.
|c 2021
|b American Geophysical Union
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1640855841_2276
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a To unequivocally discover the actual presence of life or even of near surface liquid water on extraterrestrial planetary bodies would be a key scientific breakthrough for humankind. For this reason, studying similar environments on Earth is essential to understanding the processes shaping such extraterrestrial objects. The Yungay area in the Chilean part of the Atacama Desert is deemed to be particularly suitable as a terrestrial analog of Mars (TAM). In this study, we deployed multi-frequency ground penetrating radar (GPR) and a six-coil electromagnetic induction (EMI) system with a maximum depth of investigation of 1.8 m over an area of 0.66 hectares (110 x 60 m). By applying a LOWESS algorithm to the GPR envelope data, we aimed to extrapolate the strongest amplitudes indicating physical contrasts to 3D. The results were constrained with two existing pits 100 m apart. Whereas clay content was mostly responsible for GPR signal attenuation, changes in texture and stratigraphy were linked with strong amplitude reflections. EMI showed very low apparent electrical conductivity (ECa) values between 0 and 5 mS/m. The ECa variability could be linked to changes in clay content with depth. This agreed with the surface obtained from the LOWESS algorithm. Although soil samples are still necessary to constrain the measured signals, we showed the benefits of applying geophysics for large-scale characterization and can conclude that these two methods are suitable for such hyperarid TAM environments. A similar routine if applied on the surface of Mars could deliver promising results for similar characteristics.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Klotzsche, A.
|0 P:(DE-Juel1)129483
|b 1
|e Corresponding author
700 1 _ |a Bol, R.
|0 P:(DE-Juel1)145865
|b 2
700 1 _ |a Moradi, G.
|0 P:(DE-Juel1)171623
|b 3
700 1 _ |a Weihermüller, L.
|0 P:(DE-Juel1)129553
|b 4
700 1 _ |a Vereecken, H.
|0 P:(DE-Juel1)129549
|b 5
700 1 _ |a Kruk, J.
|0 P:(DE-Juel1)129561
|b 6
773 _ _ |a 10.1029/2021EA001790
|0 PERI:(DE-600)2807271-6
|n 12
|p e2021EA001790
|t Earth and Space Science
|v 8
|y 2021
|x 2333-5084
856 4 _ |u https://juser.fz-juelich.de/record/902928/files/Invoice-9143301.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/902928/files/Earth%20and%20Space%20Science%20-%202021%20-%20Dal%20Bo%20-%20GPR%20and%20EMI%20Characterization%20of%20the%20Hyperarid%20Study%20Site%20of%20Yungay%20Chile%20.pdf
909 C O |o oai:juser.fz-juelich.de:902928
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129483
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)145865
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)171623
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129553
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129549
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129561
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-05-04
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EARTH SPACE SCI : 2019
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-05-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-05-04
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-05-04
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-05-04
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-05-04
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-05-04
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21