000902936 001__ 902936
000902936 005__ 20220103172028.0
000902936 0247_ $$2doi$$a10.1038/s41598-021-97546-3
000902936 0247_ $$2Handle$$a2128/29202
000902936 0247_ $$2altmetric$$aaltmetric:113310666
000902936 0247_ $$2pmid$$apmid:34504261
000902936 0247_ $$2WOS$$aWOS:000695272000106
000902936 037__ $$aFZJ-2021-04689
000902936 082__ $$a600
000902936 1001_ $$0P:(DE-Juel1)179519$$aGe, Zhuang$$b0
000902936 245__ $$aDistributions of straw-derived carbon in Mollisol’s aggregates under different fertilization practices
000902936 260__ $$a[London]$$bMacmillan Publishers Limited, part of Springer Nature$$c2021
000902936 3367_ $$2DRIVER$$aarticle
000902936 3367_ $$2DataCite$$aOutput Types/Journal article
000902936 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1638252055_15499
000902936 3367_ $$2BibTeX$$aARTICLE
000902936 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902936 3367_ $$00$$2EndNote$$aJournal Article
000902936 520__ $$aStraw incorporation is an effective measure for increasing soil organic carbon (SOC) thereby improving soil quality and crop productivity. However, quantitative assessments of the transformation and distribution of exogenous carbon (C) in soil aggregates under various field fertilization practices have been lacking. In this study, we collected topsoil samples (0–20 cm) from three fertilization treatments (no fertilization control, CK; inorganic fertilizer, IF; inorganic fertilizer plus manure, IFM) at a 29-year long-term Mollisol experiment in Northeast China. We then mixed the soil samples with 13C-labeled maize straw (δ13C = 246.9‰), referred as CKS, IFS, and IFMS, and incubated them in-situ for 360 days. Initial and incubated soil samples were separated into four aggregate fractions (> 2, 1–2, 0.25–1, and < 0.25 mm) using the dry-sieving method, which counted 18%, 17%, 45%, and 21% (averages from the three initial soil samples), respectively. Organic C content was highest in 0.25–1 mm aggregate (6.9–9.6 g kg−1) prior to incubation, followed by > 2 mm aggregates (2.2–5.8 g kg−1), 1–2 mm aggregates (2.4–4.6 g kg−1), and < 0.25 mm aggregates (3.3–4.5 g kg−1). After 360-day incubation with straw incorporation, organic C content was 2.3–4.5 g kg−1, 2.9–5.0 g kg−1, 7.2–11 g kg−1 and 1.8–3.0 g kg−1 in > 2, 1–2, 0.25–1, and < 0.25 mm aggregates, respectively, with the highest in the IFMS treatment. Straw-derived C content was 0.02–0.05 g kg−1, 0.03–0.04 g kg−1, 0.11–0.13 g kg−1, and 0.05–0.10 g kg−1 in > 2, 1–2, 0.25–1, and < 0.25 mm aggregates, respectively. The relative distribution of straw-derived C was highest (40–49%) in 0.25–1 mm aggregate, followed by < 0.25 mm aggregates (21–31%), 1–2 mm aggregates (13–15%), and > 2 mm aggregates (9.4–16%). During the incubation, the relative distribution of straw-derived C exhibited a decrease in > 2 mm and 1–2 mm aggregates, but an increase in the < 0.25 mm aggregate. At the end of incubation, the relative distribution of straw-derived C showed a decrease in the 0.25–1 mm aggregate but an increase in the < 0.25 mm aggregate under the IFMS treatment. This study indicates that more straw-derived C would be accumulated in smaller aggregates over longer period in Mollisols, and combined inorganic and organic fertilization is an effective measure for C sequestration in Northeast China
000902936 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000902936 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902936 7001_ $$0P:(DE-HGF)0$$aAn, Tingting$$b1
000902936 7001_ $$0P:(DE-Juel1)145865$$aBol, Roland$$b2
000902936 7001_ $$0P:(DE-HGF)0$$aLi, Shuangyi$$b3
000902936 7001_ $$0P:(DE-HGF)0$$aZhu, Ping$$b4
000902936 7001_ $$0P:(DE-HGF)0$$aPeng, Chang$$b5
000902936 7001_ $$0P:(DE-HGF)0$$aXu, Yingde$$b6
000902936 7001_ $$0P:(DE-HGF)0$$aCheng, Na$$b7
000902936 7001_ $$0P:(DE-HGF)0$$aLi, Tingyu$$b8
000902936 7001_ $$0P:(DE-Juel1)177040$$aWu, Yihui$$b9
000902936 7001_ $$0P:(DE-HGF)0$$aXie, Ninghui$$b10
000902936 7001_ $$0P:(DE-HGF)0$$aWang, Jingkuan$$b11$$eCorresponding author
000902936 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-021-97546-3$$gVol. 11, no. 1, p. 17899$$n1$$p17899$$tScientific reports$$v11$$x2045-2322$$y2021
000902936 8564_ $$uhttps://juser.fz-juelich.de/record/902936/files/s41598-021-97546-3.pdf$$yOpenAccess
000902936 909CO $$ooai:juser.fz-juelich.de:902936$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000902936 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145865$$aForschungszentrum Jülich$$b2$$kFZJ
000902936 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)177040$$aExternal Institute$$b9$$kExtern
000902936 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000902936 9141_ $$y2021
000902936 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000902936 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-03
000902936 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000902936 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-02-03
000902936 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-03
000902936 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-03
000902936 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2021-02-03
000902936 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2019$$d2021-02-03
000902936 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-03
000902936 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-03
000902936 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000902936 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-03
000902936 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-03
000902936 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-03
000902936 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902936 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-03
000902936 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-03
000902936 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-03
000902936 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-03
000902936 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-02-03
000902936 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-03
000902936 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000902936 980__ $$ajournal
000902936 980__ $$aVDB
000902936 980__ $$aUNRESTRICTED
000902936 980__ $$aI:(DE-Juel1)IBG-3-20101118
000902936 9801_ $$aFullTexts