000902962 001__ 902962
000902962 005__ 20220103172054.0
000902962 0247_ $$2doi$$a10.3390/min11040373
000902962 0247_ $$2Handle$$a2128/29227
000902962 0247_ $$2altmetric$$aaltmetric:103604764
000902962 0247_ $$2WOS$$aWOS:000643335700001
000902962 037__ $$aFZJ-2021-04708
000902962 082__ $$a550
000902962 1001_ $$00000-0003-2417-3494$$aSuazo-Hernández, Jonathan$$b0
000902962 245__ $$aDescribing Phosphorus Sorption Processes on Volcanic Soil in the Presence of Copper or Silver Engineered Nanoparticles
000902962 260__ $$aBasel$$bMDPI$$c2021
000902962 3367_ $$2DRIVER$$aarticle
000902962 3367_ $$2DataCite$$aOutput Types/Journal article
000902962 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1638260518_15499
000902962 3367_ $$2BibTeX$$aARTICLE
000902962 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902962 3367_ $$00$$2EndNote$$aJournal Article
000902962 520__ $$aEngineered nanoparticles (ENPs) present in consumer products are being released into the agricultural systems. There is little information about the direct effect of ENPs on phosphorus (P) availability, which is an essential nutrient for crop growth naturally occurring in agricultural soils. The present study examined the effect of 1, 3, and 5% doses of Cu0 or Ag0 ENPs stabilized with L-ascorbic acid (suspension pH 2–3) on P ad- and desorption in an agricultural Andisol with total organic matter (T-OM) and with partial removal of organic matter (R-OM) by performing batch experiments. Our results showed that the adsorption kinetics data of H2PO4− on T-OM and R-OM soil samples with and without ENPs were adequately described by the pseudo-second-order (PSO) and Elovich models. The adsorption isotherm data of H2PO4− from T-OM and R-OM soil samples following ENPs addition were better fitted by the Langmuir model than the Freundlich model. When the Cu0 or Ag0 ENPs doses were increased, the pH value decreased and H2PO4− adsorption increased on T-OM and R-OM. The H2PO4− desorption (%) was lower with Cu0 ENPs than Ag0 ENPs. Overall, the incorporation of ENPs into Andisols generated an increase in P retention, which may affect agricultural crop production
000902962 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000902962 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902962 7001_ $$0P:(DE-Juel1)129484$$aKlumpp, Erwin$$b1
000902962 7001_ $$0P:(DE-HGF)0$$aArancibia-Miranda, Nicolás$$b2
000902962 7001_ $$00000-0002-1166-5847$$aPoblete-Grant, Patricia$$b3
000902962 7001_ $$0P:(DE-HGF)0$$aJara, Alejandra$$b4
000902962 7001_ $$0P:(DE-Juel1)145865$$aBol, Roland$$b5
000902962 7001_ $$0P:(DE-HGF)0$$ade La Luz Mora, María$$b6$$eCorresponding author
000902962 773__ $$0PERI:(DE-600)2655947-X$$a10.3390/min11040373$$gVol. 11, no. 4, p. 373 -$$n4$$p373 -$$tMinerals$$v11$$x2075-163X$$y2021
000902962 8564_ $$uhttps://juser.fz-juelich.de/record/902962/files/minerals-11-00373-v4.pdf$$yOpenAccess
000902962 909CO $$ooai:juser.fz-juelich.de:902962$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000902962 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129484$$aForschungszentrum Jülich$$b1$$kFZJ
000902962 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145865$$aForschungszentrum Jülich$$b5$$kFZJ
000902962 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000902962 9141_ $$y2021
000902962 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-05-04
000902962 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000902962 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000902962 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-05-04
000902962 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMINERALS-BASEL : 2019$$d2021-05-04
000902962 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-04
000902962 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-04
000902962 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000902962 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000902962 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-05-04
000902962 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-05-04
000902962 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902962 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-05-04
000902962 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000902962 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-05-04
000902962 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-05-04
000902962 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-05-04
000902962 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000902962 980__ $$ajournal
000902962 980__ $$aVDB
000902962 980__ $$aUNRESTRICTED
000902962 980__ $$aI:(DE-Juel1)IBG-3-20101118
000902962 9801_ $$aFullTexts