Influences of irrigation and fertilization on soil N cycle and losses from wheat–maize cropping system in northern China

Xin Zhang, Guangmin Xiao, Roland Bol, Ligang Wang, Yuping Zhuge, Wenliang Wu, Hu Li, Fangiao Meng

PII: S0269-7491(21)00434-6

DOI: https://doi.org/10.1016/j.envpol.2021.116852

Reference: ENPO 116852

To appear in: Environmental Pollution

Received Date: 5 November 2020 Revised Date: 17 January 2021 Accepted Date: 24 February 2021

Please cite this article as: Zhang, X., Xiao, G., Bol, R., Wang, L., Zhuge, Y., Wu, W., Li, H., Meng, F., Influences of irrigation and fertilization on soil N cycle and losses from wheat–maize cropping system in northern China, *Environmental Pollution*, https://doi.org/10.1016/j.envpol.2021.116852.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2021 Elsevier Ltd. All rights reserved.

Author Statement

Dear Editor,

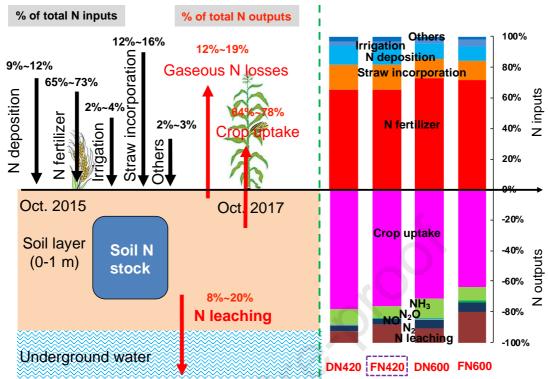
Individual contributions from each author to the paper are listed below:

Xin Zhang. Conceptualization, data curation, formal analysis, writing - original draft preparation.

Guangmin Xiao. Investigation, methodology, resources, software.

Roland Bol. Methodology, languages.

Ligang Wang. Methodology, resources.


Yuping Zhuge. Methodology, resources.

Wenliang Wu. Methodology, resources.

Hu Li. Methodology, resources.

Fanqiao Meng. Supervision, writing - review & editing, funding acquisition.

Graphic abstract

Influences of irrigation and fertilization on soil N cycle and losses from wheat-

1

2 maize cropping system in northern China Xin Zhang^{1, 2}, Guangmin Xiao², Roland Bol^{3, 4}, Ligang Wang⁵, Yuping Zhuge⁶, 3 Wenliang Wu², Hu Li⁵, Fanqiao Meng^{2*} 4 5 1 State Key Laboratory of North China Crop Improvement and Regulation, College of 6 Resources and Environmental Sciences, Hebei Agricultural University, Baoding 071000, 7 China 8 2 Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Beijing 9 Key Laboratory of Biodiversity and Organic Farming, College of Resources and 10 Environmental Sciences, China Agricultural University, Beijing 100193, China 11 3 Institute of Crop Science and Resource Conservation, Soil Science and Soil Ecology, 12 University of Bonn, Germany 13 4 School of Natural Sciences, Environment Centre Wales, Bangor University, Bangor, LL57 14 2UW, U.K. 15 5 Institute of Agricultural Resources and Regional Planning, Chinese Academy of 16 Agricultural Sciences, Beijing 100081, China

- 17 6 National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources,
- College of Resources and Environment, Shandong Agricultural University, Taian, 271018,
- 19 China
- * Correspondence author. Email: mengfq@cau.edu.cn; Tell: 0086 10 62731538

Abstract

21

22 Excess of water irrigation and fertilizer consumption by crops has resulted in high soil nitrogen (N) losses and underground water contamination not only in China but 23 24 worldwide. This study explored the effects of soil N input, soil N output, as well as the effect of different irrigation and N- fertilizer managements on residual N. For this, 25 26 two consecutive years of winter wheat (Triticum aestivum L.) –summer maize (Zea mays L.) rotation was conducted with: N applied at 0 kg N ha⁻¹ yr⁻¹, 420 kg N ha⁻¹ 27 yr⁻¹ and 600 kg N ha⁻¹ yr⁻¹ under fertigation (DN0, DN420, DN600), and N applied at 28 0 kg N ha⁻¹ yr⁻¹ and 600 kg N ha⁻¹ yr⁻¹ under flood irrigation (FN0, FN600). The 29 30 results demonstrated that low irrigation water consumption resulted in a 57.2% lower of irrigation-N input (p<0.05) in DN600 when compared to FN600, especially in a 31 32 rainy year like 2015–2016. For N output, no significant difference was found with all 33 N treatments. Soil gaseous N losses were highly correlated with fertilization (p < 0.001) 34 and were reduced by 23.6%-41.7% when fertilizer N was decreased by 30%. Soil N 35 leaching was highly affected by irrigation and a higher reduction was observed under 36 saving irrigation (reduced by 33.9%–57.3%) than under optimized fertilization

37	(reduced by 23.6%–50.7%). The net N surplus was significantly increased with N $$
38	application rate but was not affected by irrigation treatments. Under the same N level
39	(600 kg N ha ⁻¹ yr ⁻¹), fertigation increased the Total Nitrogen (TN) stock by 17.5%
40	(0–100 cm) as compared to flood irrigation. These results highlighted the importance
41	to further reduction of soil N losses under optimized fertilization and irrigation
42	combined with N stabilizers or balanced- N fertilization for future agriculture
43	development.
44	
45	Keywords : fertigation; nitrogen cycling; soil N losses; winter wheat–summer maize
46	rotation; northern China
47	
48	Main findings:
49	Soil gaseous N (NH ₃ , N ₂ O, NO, etc.) emissions were highly simulated by N
50	fertilization while nitrate leaching was mainly affected by irrigation measurement.

1 Introduction

51

52 Globally, fertilized croplands have been proved to be the major source of nitrogen 53 pollutants, such as ammonia (NH₃), nitrous oxide (N₂O), nitric oxide (NO) and nitrate 54 in water (Cui et al., 2014a; Fan et al., 2018). There is little doubt that fertilized 55 croplands are substantial cause of driving the increase in soil nitrogen (N) losses (Yan 56 et al., 2015). Ammonia loss is highly correlated to N application rates and was 57 reported to be around 3.2 Mg per year in China (Huang et al., 2012). The overuse of N fertilizer in agriculture results in high soil N surplus (i.e., 200–400 kg N ha⁻¹) 58 59 which is closely linked to N₂O and NO emissions (Ju et al., 2006; Chen et al., 2014). 60 Nitrate is very mobile in soil and can be lost by leaching through water movement 61 (Gioacchini et al., 2002), resulting in heavy groundwater contamination. Accordingly, 62 prevention of N losses through optimized farming practices especially in high 63 intensity cropping systems is of great significance. 64 Northern China, the most important and intensified cereal crop production regions 65 in China, is an area of annual winter wheat (Triticum aestivum L.)-summer maize 66 (Zea mays L.) rotation cycle (Yan et al., 2015). Unfortunately, intensive agricultural

67	systems are still inefficient in N fertilizer use (around 50%-70% of fertilizer N is lost
68	to the environment) (Ju et al., 2009). Moreover, reactive-N losses (N ₂ O, NO, NH ₃ ,
69	NO ₃ ⁻ -N leaching) possess potential pressures on underground water environment, air
70	quality and regional or global GHG-driven climate change (Zhang et al., 2020). In a
71	semiarid area like northern China, crop yield, especially winter wheat is very
72	dependent on irrigation pumped from deep groundwater (Zhang et al., 2017). Heavy
73	irrigation with low water use efficiency also causes NO ₃ ⁻ to enter into deeper soils
74	and groundwater or sometimes it is permanently lost (Currell et al., 2012). Therefore,
75	various farming measures have been taken since 1990s to reduce irrigation water and
76	N fertilizer consumption, and maintain high crop yields, especially in northern China
77	(Zhang et al., 2019).
78	Drip irrigation, as an efficient irrigation and fertilization measure, contributes to
79	high crop water- and N- use efficiency (Farneselli et al., 2015). Nitrate leaching and
80	N_2O/NO losses under fertigation were found to be lower than with furrow/flood
81	treatments (Koocheki et al., 2014; Maris et al., 2015). The reasons might be 1) only a
82	circular area wetted by the drippers has increased activities of nitrifying and

83	denitrifying bacteria which stimulates N_2O and NO production (Trost et al., 2014),
84	and 2) highly efficient water and fertilizer utilization within root zone (Kennedy et al.,
85	2013). Despite the identified relationships between improved irrigation management
86	and reduced nitrate leaching and N_2O emissions, knowledge about the soil N cycling,
87	ammonia losses and NO losses under fertigation technology is still limited, especially
88	in semiarid area like northern China. Although, a reduction of 11.0% in soil N_2O and
89	increase of 14.7% in soil NO were found with fertigation during 2015–2016 as
90	compared with farmers' practices (Zhang et al., 2019), we are still interested in
91	investigating the soil N balance including N input, N output and soil N stock changes
92	to directly reveal the difference between irrigation/fertigation regimes.
93	In the following study, NH ₃ , N ₂ O and NO losses and soil N stock, as well as crop
94	N uptake were measured simultaneously in wheat-maize rotation cycle in northern
95	China. The aim of the present study is to: (1) determine which management events are
96	beneficial for soil ammonia volatilization, N_2O and NO emissions and nitrate leaching
97	over the cropping years, (2) assess the influence of irrigation/fertilization

98 managements on soil N cycle and losses, (3) identify the potential changes in field 99 managements to reduce N losses and maintain high crop yield. 100 2 Materials and methods 101 2.1 Study area and treatments The study site (36°51′-37°06′N, 117°50′-118°10′E) was located in Huantai 102 103 Experimental Station of China Agricultural University, Shandong province. Huantai County, the first one to achieve an average grain yield of 15 t ha⁻¹ after 1990, was 104 105 typically represented the farming system (an annual double crop rotation of winter wheat and summer maize form), geographical and climate conditions, irrigation and 106 107 fertilization managements (Zhang et al., 2017). The mean annual precipitation and air 108 temperature were 596.9 mm and 14.8 °C, respectively (Zhang et al., 2020). The 109 physio-chemical properties of the calcareous fluvo-aquic soil (0–30 cm) were as follows: bulk density- 1.40 g cm⁻³; pH (1:2.5, soil/water)- 7.8; SOC concentration-110 17.3 g kg⁻¹; and total N concentration- 1.1 g kg⁻¹. 111 112 The field study was conducted over 2 full cycles from Oct. 2015 to Oct. 2017 of 113 the winter wheat (*T. aestivum* L.) and summer maize (*Z. mays* L.) cropping system.

114	Wheat (Luyuan 502) was sown in mid-October with a row space of 40 cm, and
115	harvested in early June of the following year. Maize was sown in mid-June with a row
116	space of 60 cm and harvested at the end of September. Previous maize and wheat
117	straw were mechanically chopped (length of 5-8 cm and 2-5 cm, respectively) and
118	then incorporated in the soil (Huang et al., 2017).
119	In this study, two factors considered were irrigation management and N application
120	rate. For both years, two irrigation management systems- drip irrigation (D) and flood
121	irrigation (F), and three N application rates- 0, 420, and 600 kg N ha ⁻¹ yr ⁻¹ (referred
122	to as no N application N0, optimal N application N420, and conventional N
123	application N600) were conducted. In northern China, optimal N applied under flood
124	irrigation has been much intensively studied during the past years with similar results
125	and thus is not the subject of this experiment. The experimental design of current
126	study included 5 treatments: DN0, DN420, DN600, FN0, and FN600, arranged in a
127	randomized block design with three replications. Each plot was an area of 10 m length
128	\times 5 m width. The relevant N input and N output values of another flood irrigation

129	treatment with N application rate at 420 kg N ha ⁻¹ yr ⁻¹ (FN420) are estimated in
130	Table S1 in detail.
131	For drip irrigation, drip lines were installed along each crop row (total 12 lines for
132	wheat and 8 lines for maize). Further details of surface drip fertigation system, time
133	and amount of each irrigation, fertilization and rainfall in different crop growth stages
134	for all treatments are described in a previous study (Zhang et al., 2019). The total
135	water received and soluble urea fertilizer used during 2015–2017 is represented in
136	Figure 1.
137	2.3 Measurement of N_2O , NO and ammonia volatilization
138	N_2O and NO gas samples were collected using a closed chamber method, and were
139	analyzed using a gas chromatograph (Agilent 7820A, Agilent, US) and a 42i
140	chemiluminescence NOx analyzer (Thermo Environmental Instruments Inc., US),
141	respectively. The N_2O and NO fluxes were determined by the linear or nonlinear
142	methods (described in Supporting Information) (Yan et al., 2015).
143	NH ₃ was measured by Dräger-Tube Method, described in detail by Pacholski et al.
144	(2008). The NH ₃ concentration was recorded directly by Dräger detector tube

- 145 (Drägerwerk AG, Germany), which contained a solid phase acid compound and
- bromophenol blue pH indicator. The atmospheric pressure, air temperature, pump
- strokes and duration was recorded for the calculation of NH_3 fluxes (mg $N m^{-2} h^{-1}$)
- according to Eq. (1) (Pacholski et al., 2006; Pacholski et al., 2008):

$$F_{Ng} = V \cdot /conc. / \cdot 10^{-6} \cdot \rho_{NH3} \cdot U_N \cdot U_F \cdot U_Z$$
 (1)

- where, F_{Ng} (mg N m⁻² h⁻¹) is NH₃ volatilization flux; V (L) is pump volume; |conc.|
- 151 (μ l L, ppm) is NH₃ concentration; ρ_{NH3} (mg L⁻¹) is NH₃ density under the condition
- $(\rho_{NH3}=696 \text{ mg L}^{-1}); U_N(14/17) \text{ is conversion factor of molecular weight from NH}_3 \text{ to}$
- N; U_F (m², 10000/400) is surface area conversion factor; U_Z (h, 3600/time) is time
- 154 conversion factor. NH₃ flux was then corrected according to wind speed at the height
- of 0.2 m and 2 m, as followed equations:
- Wheat season:

$$\ln(NH_3 flux_{HF}) = 0.444 \cdot \ln(NH_3 flux_{DTM}) + 0.590 \cdot \ln(V_{2m})$$
 (2)

158 Maize season:

$$\ln(NH_3 flux_{IHF}) = 0.456 \cdot \ln(NH_3 flux_{DTM}) + 0.745 \cdot \ln(V_{2m}) - 0.280 \cdot \ln(V_{0.2m})$$
 (3)

- where, $NH_3 flux_{IHF}$ (kg N ha⁻¹ h⁻¹) was determined by IHF method; V_{2m} and $V_{0.2m}$ (m
- s⁻¹) represent wind speed at the height of 2 m and 0.2 m, respectively.
- 162 2.3 Data calculation
- 163 To calculate N input, seven parameters were considered: N from fertilizer and
- irrigation water, straw incorporation, atmospheric deposition (dry and rainfall),
- non-bio fixation and seeds. All data were obtained as follows:
- 166 Fertilizer ($N_{Fertilizer}$), irrigation ($N_{Irrigation}$) and rainfall ($N_{rainfall}$): Across the two
- 167 cropping years, N fertilizer application (urea- 46% N), irrigation and rainfall events
- are all shown in Figure 1. Irrigation water samples during each irrigation event, and
- rainfall samples during every rainy day were collected in cleaned plastic bottles and
- stored at -20°C for NH₄⁺-N and NO₃⁻-N concentration analysis using a continuous
- 171 flow analyzer (TRAACS2000, SEAL Inc., Germany). The N input from irrigation and
- rainfall (kg N ha⁻¹) was determined according to NH₄⁺–N and NO₃⁻–N concentration
- 173 (C; $mg L^{-1}$) and irrigation/rainfall amount (O_1 ; mm):

$$N_{irrigation/rainfall} = (C_{NO3-N} + C_{NH4+-N}) \times Q_1 \times 10$$
(4)

175 Straw incorporation: In this study, the N input of wheat straw incorporated in June 176 2015 was offset by the one incorporated in June 2017. Here, we did not consider the N input from previous straw incorporated before the maize season in Oct. 2015. 177 178 During the experimental period, previous straw (wheat/maize) was collected and weighed for straw amount (Q₂; kg ha⁻¹) and then smashed to analyze the N content of 179 straw $(A_I; g kg^{-1})$ by an element analyzer (Flash 2000, Thermo, US). The N input 180 from straw incorporation (kg N ha⁻¹) was determined according to Eq. (5): 181 182 $N_{Incorperation} = A_1 \times Q_2/1000$ (5) 183 Atmospheric dry N deposition (N_{Deposition}): It is defined that gaseous and particulate N is transported from air to the surfaces of aquatic and terrestrial landscapes 184 185 (Anderson and Downing, 2006). In northern China, atmospheric N (wet+dry) deposition has increased gradually from approximately 25 kg ha⁻¹ in 1980s to around 186 80 kg ha⁻¹ in 2010 (Ju et al., 2009; Zhang et al., 2011). Additionally, the wet N 187 deposition (i.e., N input from rainfall) ranged from 19.5 to 28.8 kg ha⁻¹ yr⁻¹ (Table 1). 188 And the dry N deposition was especially found up to 50 kg ha⁻¹ yr⁻¹ in northern China 189

190	(Liu et al., 2020). Therefore, for the current work, we have set the value of annual dry
191	N deposition in northern China at 55 kg N ha ⁻¹ (Shen et al., 2009).
192	<i>Non-bio fixation</i> ($N_{Fixation}$): It ranged from 4.5 to 20 kg ha ⁻¹ yr ⁻¹ for
193	non-leguminous crops (Bouwman et al., 2005). In the current work, we have set a
194	value of 15 kg N ha ⁻¹ yr ⁻¹ for non-bio fixation in croplands (Liu <i>et al.</i> , 2008).
195	Seeds (N_{seeds}): The maize and wheat seeds samples were collected and weighed.
196	These were smashed to analyze the N content by an element analyzer (Flash 2000,
197	Thermo, US). N input from seeds was calculated according to the sowing amount (kg
198	ha ⁻¹) and N content (g kg ⁻¹) using Eq. (5):
199	For N output, we considered crop uptake, ammonia volatilization (N_{NH3}), and N_2O
200	$(N_{\rm N2O}),NO(N_{\rm NO}),N_2(N_{\rm N2})$ emissions, and nitrate leaching. The calculation is
201	presented below.
202	Crop uptake (N_{Uptake}): Wheat and maize were harvested in each plot and the grain
203	was separated from the straw. They were weighed after oven-drying to calculate the
204	yield (grain/straw) and smashed to measure the N content. Crop N uptake by wheat

205	and maize was determined by the grain/straw yield (kg ha ⁻¹) and N content (g kg ⁻¹)
206	according to Eq. (5).
207	Ammonia volatilization (N_{NH3}), N_2O loss (N_{N2O}) and NO loss (N_{NO}): To more
208	effectively assess the effect of the alternatives of irrigation and fertilizer managements
209	on NH_3 , N_2O and NO emissions, the annual cumulative losses were expressed on the
210	area N bases (kg N ha ⁻¹), and were calculated by summing the daily mean fluxes, and
211	the one of nonmeasurement days which were estimated by interpolating linearly
212	between sampling dates (Xu et al., 2020).
213	N_2 loss (N_{N2}): Houlton and Bai (2009) confirmed that N_2/N_2O ratio ranged from
214	2.2 to 4.6 at the global scale, while Ciarlo et al. (2006) reported a value of 4–9 during
215	21-day incubation period at 40%-80% of WFPS. Based on these previous studies, we
216	set a seven-fold of N_2O emitted to evaluate N_2 loss.
217	Soil total N (TN): The soil samples (0–100 cm) were collected in triplicates from
218	each plot in May 2013 (date of original experiment) and in Oct. 2017 and mixed into
219	one composite sample. The subsamples were air dried and sieved through 0.5 mm

- mesh for soil total N concentration analysis with an element analyzer (Flash 2000,
- Thermo, US). The TN stock (kg N ha⁻¹) was calculated by Eq. (7),

222
$$TN \ stock = \sum_{i=1}^{5} \rho_i \times 0.2 \times 10000 \times c_i$$
 (7)

- where, ρ_i is soil bulk density of *i*th soil layer (g cm⁻³); c_i is TN concentration of *i*th
- soil layer (g kg⁻¹); i=1, 2, 3, 4, 5 represents 0–20 cm, 20–40 cm, 40–60 cm, 60–80
- cm, and 80–100 cm soil layer, respectively.
- N leaching (kg N ha⁻¹) was calculated as follows:
- $N leaching = (N_{Fertilizer} + N_{Irrigation} + N_{Deposition} + N_{Rainfall} + N_{Fixiation} + N_{Incorperation})$
- 228 $(N_{Uptake} + N_{NH3} + N_{N2O} + N_{NO} + N_{N2}) (TN_{Final} TN_{Initial}) \times 2/4.5$ (10)
- where, TN_{Initial} is the soil TN stock in May 2013; TN_{Final} is the soil TN stock in Oct.
- 230 2017.
- 231 2.5 Statistical analysis
- In this study, all statistical analyses were performed using SPSS Statistics 22.0
- software (SPSS Inc., Beijing, China). A t-test (p< 0.05) was used to determine the
- significant differences in total N input, crop N uptake, soil NH₃, N₂O, NO, and N

235	leaching, and soil environmental variables between the treatments. All values were
236	expressed as the mean (n=3) and standard error of each replicate.
237	3 Results
238	3.1 Soil nitrogen (N) stock
239	In this study, a 4.5 year (May 2013–Oct 2017) of soil TN stock in 0–100 cm soil
240	layer was determined (Figure 2). Large variations were found in different soil layers,
241	and the TN stock in 0-100 cm soil layer (especially in 0-60 cm) was significantly
242	influenced by fertilization (Table 2).
243	In general, when flood irrigation was replaced with fertigation, soil TN stock
244	(0-100 cm) was increased by 3.6% and 17.5% with N fertilizer applied at 420 kg N
245	ha ⁻¹ yr ⁻¹ and 600 kg N ha ⁻¹ yr ⁻¹ , respectively (Table 1, Table S1). Additionally, with
246	30% reduction in N fertilizer, soil N stock was decreased by 48.0% under flood
247	irrigation, while the respective reduction was by 54.2% under fertigation (Table S1).
248	Furthermore, TN stock by DN420 and DN600 increased in 0-60 cm soil layer but
249	decreased in deeper soil layers, while with FN600, TN stock increased in each soil
250	layer (especially in 40–60 cm soil layer, Figure 2a2, b2, e2). From May 2013 to

251	October 2017, the increase in the amount of mean annual TN stock with different
252	fertilized treatments varied in the following order: DN600> FN600> DN420 (186.2
253	$kg\ N\ ha^{-1}\ yr^{-1})$ in 0–60 cm soil layer and FN600 >DN600 >DN420 (-61.8 $kg\ N\ ha^{-1}$
254	yr ⁻¹) in 80–100 cm soil layer. This indicated that flood irrigation measurements might
255	result in N movements to deeper soil layer.
256	3.2 N input and output
257	Over the two rotation years, chemical N fertilizer was estimated to contribute
258	65.3%-72.8% of total N input with all fertilization treatments (Table 1). As shown in
259	Figure 3, during 2015–2016, irrigation N input by DN600 was 57.2% lower (p <0.05)
260	than the one by FN600. N input with DN420 was the lowest due to a 30% reduction
261	in N fertilizer application. During 2016–2017, a limit rainfall (decrease by 32.4% than
262	the rainfall in 2015–2016) resulted in heavy irrigation water demand for fertigation,
263	which increased irrigation N input. This led to no significant difference between N
264	input by DN600 and FN600. N input by DN420 significantly decreased by 27.9%
265	(p <0.05) and 23.1% (p <0.05) as compared to that by DN600 and FN600, respectively,
266	in 2016–2017. In the 2 years, the N input by DN420 (1286.8 kg N ha ⁻¹) was 21.9%

267	(p<0.05) and 23.4% $(p<0.05)$ lower than by DN600 and FN600, respectively (Table
268	1).
269	All fertilization treatments showed no significant difference in N output (Table 1,
270	Figure 3). Compared with FN600, DN600 reduced N_2O and N_2 output by 11.4%, but
271	increased NH ₃ and NO output by 17.6% (p <0.05) and 14.2%, respectively, in
272	2015–2016. While, in 2016–2017, N_2O and N_2 output increased by 12.3% and that of
273	NH ₃ and NO increased by 24.3% and 26.9%, respectively. Under fertigation treatment
274	when there was a reduction of 30% in N fertilizer applied, 22.3% (p <0.05) of NH ₃
275	output, 25.8% of N ₂ O output (p <0.05), 35.1% of NO output (p <0.05), and 25.8% of
276	N_2 (p <0.05) output decreased when compared with DN600 treatment, in 2015–2016.
277	While, in 2016–2017, 25.2% of NH ₃ output (p <0.05), 49.1% of N ₂ O output (p <0.05),
278	40.6% of NO output (p <0.05), and 25.8% of N ₂ output (p <0.05) decreased in
279	comparison with DN600.
280	During the 2 consecutive cropping years, optimal fertilization treatments (DN420
281	and FN420) decreased NH $_3$, N $_2$ O, NO emission by 23.6% -28.1% , 40.6% -41.7% , and
282	38.4%-40.6%, respectively, compared with conventional fertilization treatments

283	(DN600, FN600, Figure 4). Fertigation treatments (DN420, DN600) especially
284	increased ammonia volatilization and NO emission by 20.5%-28.0% and
285	20.9%–29.7%, respectively, while decreased N_2O (/ N_2) emission by 11.4%–12.8% in
286	comparison with flood irrigation (FN420, FN600). Moreover, NH_3 , N_2O and NO
287	emissions were significantly stimulated by N fertilization especially in maize season
288	(Table 2, 3). However, no significant interaction effects of irrigation and fertilization
289	on season-/annual- NH ₃ , N ₂ O and NO emissions were detected in this study (Table 2).
290	Allover, these results indicated a higher influence of fertilization on soil gaseous N
291	losses than that of irrigation treatments.
292	3.3 Net N surplus and nitrate leaching
293	Net N surplus is defined as total N input minus N output, which reflects the increased
294	amount of soil TN and increased nitrate (N) leaching. As shown in Figure 3, at the
295	same N input, no significant difference with respect to net N surplus between
296	fertigation and flood irrigation was observed. However, DN420 showed 48.7%
297	$(p<0.05, 153.3 \text{kg N ha}^{-1}, 2015-2016)$ and 49.7% $(p<0.05, 175.4 \text{ kg N ha}^{-1},$
298	2016–2017) lower of net N surplus than with DN600.

299	N leaching (0-100 cm) plays an important role in soil N losses and is estimated by
300	soil TN stock and net N surplus. Fertigation (DN420, DN600) was attributed to
301	33.9%–57.3% decrease in N leaching than flood irrigation (FN420, FN600) (Table 1,
302	Table S1 and Figure 4). However, when N application was reduced by 30%, i.e. under
303	optimal fertilization (DN420, FN420), 23.6%-50.7% of soil N was prevented from
304	leaching compared with conventional fertilization (DN600, FN600). This indicated a
305	higher influence of irrigation events on soil N leaching than fertilization treatments.
306	4 Discussions
307	4.1 Effects of irrigation and fertilization on soil gaseous N losses
308	Nitrogen fertilization greatly stimulated soil gaseous N (i.e., NH ₃ , N ₂ O and NO)
309	emissions than irrigation measurements (Figure 4).
310	Ammonia volatilization is affected by the soil ammoniacal N concentration and by
311	the resistance to NH ₃ movement from soil matrix, which is highly correlated with soil
312	$\mathrm{NH_4}^+$ concentration (p <0.05, especially within 7 days after N application; Table S2)
313	and significantly simulated by N fertilization (p<0.001, Table 2; Xu et al., 2020). In
314	this study, a 23.6%–28.1% reduction of NH_3 volatilization was found when N

315	fertilizer applied was reduced by 30% (Figure 4). Immediate irrigation after
316	fertilization causes the movement of fertilizer N into deeper soil layers, reducing the
317	concentration of ammoniacal N in surface soil layer (Table S3; (Li et al., 2018). For
318	fertigation, urea was completely dissolved into irrigation water and then applied to
319	crop system using a small irrigation water amount (<70 mm), which was beneficial in
320	keeping the dissolved urea solution in top soil layer (Li and Rao, 2003). Li et al.
321	(2018) reported that the activity of urease was improved and the hydrolysis of urea in
322	fertigation occurred much more quickly than with other systems such as flood
323	irrigation, especially under straw incorporation condition. Above all, a 20.5%-28.0%
324	higher of NH ₃ volatilization under fertigation than flood treatment was found in our
325	study (Figure 4).
326	In agricultural soil, N ₂ O and NO emissions occurred within 7-14 days after
327	fertilization or irrigation (Zaman et al., 2008). Here, the water filled pore space
328	(WFPS) during 7-days after irrigation with DN600 and FN600 was 68.4% and 77.8%.
329	respectively (Table S3). Lower soil WFPS was beneficial in increasing O ₂
330	concentration, and in promoting the oxidation of NH_4^+ to NH_2OH and NO_2^- , and then

331	to NO ₃ ⁻ (Zhou <i>et al.</i> , 2017). Meanwhile, N ₂ O produced by nitrification process could
332	be further oxidized to NO, leading to higher NO production in fertigation (i.e. DN600)
333	than in flood irrigation (FN600). Many previous studies have proved that NO is
334	mainly ascribed to nitrification process (Tian et al., 2016) and is highly correlated to
335	soil NH ₄ ⁺ –N (p <0.05) concentration but not to WFPS (Table 3). Additionally,
336	nitrification mainly occurred when NO/N ₂ O>1 (Meijide <i>et al.</i> , 2007). After irrigation
337	events, the NO/N ₂ O was >1 in the first 2–3 days under fertigation but a NO/N ₂ O<1
338	was observed under flood irrigation treatment (Figure S1). In northern China, nitrifier
339	denitrification and nitrification were the main processes to stimulate N_2O emission,
340	and accounted for 44%–58% and 35%–53% of total N_2O emission, respectively
341	(Huang et al., 2014). N ₂ O emission was highly correlated to NH ₄ ⁺ –N (p <0.01),
342	NO_3^- -N (p <0.05) and NH_4^+ -N+NO $_3^-$ -N (p <0.01) concentration (Table 3). This
343	again highlighted that flood irrigation management is beneficial for the $N_2\text{O}$ emission
344	through nitrifier denitrification but inhibited the NO emission through nitrification
345	(Tian et al., 2016). Moreover, reduced fertilizer N application directly reduced the

346	concentration of soil ammoniacal N, which highly contributed to gaseous N
347	mitigation than saving irrigation water.
348	4.2 Alternative practices affecting residual soil N concentration
349	In a cropland, field management, soil pH, temperature, moisture, and texture, micro
350	and macrofauna affect the residual soil N concentration (Malhi et al., 2011). In
351	northern China, no-tillage and straw incorporation are the main reasons resulting in
352	increased soil N concentration (Liao et al., 2015). Straw incorporation is a source of
353	soil organic matter and crop N, and an energy source for soil microorganisms (Malhi
354	et al., 2011). Furthermore, straw incorporation with a high C:N ratio is beneficial in
355	promoting the immobilization of N in soil by microbes (Luxhøi et al., 2007). Also,
356	no-tillage leads to higher net mineralization and nitrification rates but inhibits
357	heterotrophic nitrification rates in upper soil layer (0–5 cm) (Liu et al., 2017).
358	Moreover, management-related losses of soil N pool were prevented and the
359	conversion of soil N to readily available forms was observed to be reduced in untilled
360	soil (Olin et al., 2015).

361	In our study, fertigation increased the soil TN stock by 3.6%-17.5% (DN420,
362	DN600) (Table S1) than the flood irrigation (FN420, FN600). First, lower soil
363	moisture (Table S3) in fertigation treatments is proved to be beneficial for the
364	activities of soil microorganisms and also promotes the N transformation from straw
365	into soil N pool by net immobilization and mineralization. This increases the soil
366	micro biomass, especially under straw incorporation condition (Bhat and Sujatha,
367	2009; Dignac et al., 2017). Second, fertigation is observed to contribute towards soil
368	N accumulation in 0–100 cm soil layer (especially in 0–60 cm) and significantly
369	reduce the movement of N from surface soil layer to deeper layers (Figure S2;
370	Halvorson et al., 2008). This indicated the potential feasibility of applying alternative
371	managements (i.e., fertigation combined with fertilizer N reduction) to prevent the
372	movement of soil N to deeper.
373	4.3 Impact of fertigation on soil nitrate (N) leaching
374	N leaching is the main contributor of soil N losses, accounting for 10.1%-22.2% of N
375	loss rates (Cui et al., 2014b). Li et al. (2014) reported using DNDC model that the N
376	leaching of farmers' practice was 128–132 kg N ha ⁻¹ yr ⁻¹ in flood irrigation. While, N

377	leaching was 114 kg N ha ⁻¹ yr ⁻¹ when the N fertilizer applied was 600 kg N ha ⁻¹ yr ⁻¹
378	according to the equation estimated by Chen et al. (2014). In our study, the N
379	leaching value of 123 kg N ha ⁻¹ yr ⁻¹ of farmers' practice was observed which was in
380	agreement with the previous studies. Reduced fertilizer- N application not only
381	decreased soil gaseous N (NH ₃ , N ₂ O, NO, etc.) losses, but contributed to soil nitrate
382	leaching reduction (Ju et al., 2009). Abera et al. (2018) reported 7.2%–17.0%
383	reduction in N leaching when 50% of fertilizer-N decreased. Our study highlighted
384	that 23.6%-50.7% of N leaching was deceased when 30% of fertilizer N application
385	was reduced (DN420 vs. DN600, FN420 vs. FN600; Figure 4).
386	As shown in section 4.1, saving irrigation managements i.e., fertigation was
387	beneficial for nitrification processes, and contributed to the high accumulation of
388	NO ₃ ⁻ –N in soil under fertilized treatments especially in 0–60 cm soil layer (Figure
389	S2-3; Cameira <i>et al.</i> , 2014). Soil N leaching was obviously influenced by irrigation
390	measurements but not by fertilization (Figure 4; Yang et al., 2018). For instance, Sui
391	et al. (2015) reported that 15%-37% of N leaching was reduced in fertigation when
392	18%–36% of irrigation water was saved. Also, Peng et al. (2011) found that the N

393	leaching was decreased by 38%-56% in control irrigation, as compared with flood
394	irrigation. In the current study, N leaching was decreased by 33.9%-57.3% under
395	fertigation as compared to that under flood irrigation with the same N level (DN420
396	vs. FN420; DN600 vs. FN600; Figure 4). Saving irrigation water measurement is thus
397	a key factor to affect the soil N leaching to deeper soil layers than fertilization.
398	Although fertigation can highly reduce N leaching, the high residual N in the soil
399	presents more potential risks to the environment than leaching (Sui et al., 2015).
400	Therefore, fertigation technology should be recommended coupled with alternative
401	managements to reduce soil N losses and residual N. An example of the alternative
402	technique include the use of urease/nitrification inhibitor combined with N fertilizer
403	(urea) that could significantly reduce NH_3 volatilization, and N_2O and NO production
404	(Zaman et al., 2008; Zhao et al., 2017). The balanced (reduced) N fertilization
405	measurements were applied to decrease soil N pool (Zhang et al., 2011). Although
406	several such studies are reported, especially in northern China, more work needs to be
407	done to develop better water and fertilizer saving technologies and meet the goal of
408	sustainable agriculture development in future.

5 Conclusions

409

410 Drip fertigation can reduce the consumption of underground water for irrigation, 411 which is beneficial for wheat-maize planting especially in semiarid area like northern 412 China. Compared with 2015-2016, 32.4% decrease of rainfall caused 52.8% increase of irrigation- N input in 2016–2017. Under the same N application level, irrigation 413 414 measurement was the key factor to affect soil N leaching (-33.9% - -57.3%) than fertilization (-23.6% - -50.7%). However, fertilization was the main factor to 415 influence soil gaseous N losses (NH₃: -23.6% - -28.1%; N₂O: -20.8% - -41.7%; 416 417 NO: -5.6% - -38.4%) than irrigation (NH₃: +20.5% - +28.0%; N₂O: -12.8% --35.8%; NO: -21.2% - +20.9%). The net N surplus was significantly increased with 418 N application rate but not affected by irrigation treatments, and the lowest one was 419 420 found in DN420. Soil TN stock (0–100 cm) was increased by 3.6%–17.5% when 421 flood irrigation was replaced with fertigation, while it was decreased by 48.0%-54.2% 422 when N fertilizer application was reduced by 30%. To balance the influence of 423 fertilization and irrigation on soil N losses, reducing the current irrigation water and N 424 fertilizer N input would be the most promising alternative management practice in

425	northern China. Moreover, N stabilizers or balanced- N fertilization and technologies
426	should be studied and practiced to alleviate the high soil N losses for future
427	agriculture development.
428	Acknowledgments
429	This study was financially supported by the State's Key Project of Research and
430	Development Plan (2016YFD0201204). We also gratefully acknowledge the
431	participating farmers at Huantai Experimental Station, and other relevant help.

432	References
433	Abera, D., Kibret, K., Beyene, S., Kebede, F., 2018. Nitrate leaching under farmers'
434	fertilizer and irrigation water use in the central rift valley of Ethiopia. International
435	Journal of Plant & Soil Science 21, 1-17. DOI: 10.9734/IJPSS/2018/39076
436	Anderson, K.A., Downing, J.A., 2006. Dry and wet atmospheric deposition of
437	nitrogen, phosphorus and silicon in an agricultural region. Water, Air, and Soil
438	Pollution 176, 351-374. DOI: 10.1007/s11270-006-9172-4
439	Bhat, R., Sujatha, S., 2009. Soil fertility and nutrient uptake by arecanut (Areca
440	catechu L.) as affected by level and frequency of fertigation in a laterite soil.
441	Agricultural Water Management 96, 445-456. DOI: 10.1016/j.agwat.2008.09.007
442	Bouwman, A., Van Drecht, G., Van der Hoek, K., 2005. Surface N balances and
443	reactive N loss to the environment from global intensive agricultural production
444	systems for the period 1970–2030. Science in China Series C: Life Sciences 48,
445	767-779. DOI: 10.1007/BF03187117
446	Cameira, M.R., Pereira, A., Ahuja, L., Ma, L., 2014. Sustainability and environmental
447	assessment of fertigation in an intensive olive grove under Mediterranean

448 conditions. Agricultural Water Management 146, 346-360. DOI: 449 10.1016/j.agwat.2014.09.007 450 Chen, X., Cui, Z., Fan, M., Vitousek, P., Zhao, M., Ma, W., Wang, Z., Zhang, W., 451 Yan, X., Yang, J., Deng, X., Gao, Q., Zhang, Q., Guo, S., Ren, J., Li, S., Ye, Y., Wang, Z., Huang, J., Tang, Q., Sun, Y., Peng, X., Zhang, J., He, M., Zhu, Y., Xue, 452 453 J., Wang, G., Wu, L., An, N., Wu, L., Ma, L., Zhang, W., Zhang, F., 2014. 454 Producing more grain with lower environmental costs. Nature 514, 486-489. DOI: 455 10.1038/nature13609 Ciarlo, E., Conti, M., Bartoloni, N., Rubio, G., 2006. The effect of moisture on nitrous 456 oxide emissions from soil and the $N_2O/(N_2O+N_2)$ ratio under laboratory conditions. 457 458 Biology and Fertility of Soils 43, 675-681. DOI: 10.1007/s00374-006-0147-9 459 Cui, F., Zheng, X., Liu, C., Wang, K., Zhou, Z., Deng, J., 2014a. Assessing 460 biogeochemical effects and best management practice for a wheat-maize cropping 461 system using the DNDC model. Biogeosciences 11, 91-107. DOI: 462 10.5194/bg-11-91-2014

463 Cui, Z., Wang, G., Yue, S., Wu, L., Zhang, W., Zhang, F., Chen, X., 2014b. Closing 464 the N-use efficiency gap to achieve food and environmental security. 465 Environmental Science & Technology 48, 5780-5787. DOI: 10.1021/es5007127 466 Currell, M.J., Han, D., Chen, Z., Cartwright, I., 2012. Sustainability of groundwater usage in northern China: dependence on palaeowaters and effects on water quality, 467 468 quantity and ecosystem health. Hydrological Processes 26, 4050-4066. DOI: 469 10.1002/hyp.9208 Dignac, M.F., Derrien, D., Barré, P., Barot, S., Cécillon, L., Chenu, C., Chevallier, T., 470 471 Freschet, G.T., Garnier, P., Guenet, B., Hedde, M., Klumpp, K., Lashermes, G., Maron, P.A., Nunan, N., Roumet, C., Basile-Doelsch, I., 2017. Increasing soil 472 473 carbon storage: mechanisms, effects of agricultural practices and proxies. A review. Agronomy for Sustainable Development 37,14. DOI: 10.1007/s13593-017-0421-2 474 475 Fan, C., Li, B., Xiong, Z., 2018. Nitrification inhibitors mitigated reactive gaseous 476 nitrogen intensity in intensive vegetable soils from China. Science of the Total 477 Environment 612, 480-489. DOI: 10.1016/j.scitotenv.2017.08.159

Farneselli, M., Benincasa, P., Tosti, G., Simonne, E., Guiducci, M., Tei, F., 2015. 478 479 High fertigation frequency improves nitrogen uptake and crop performance in 480 processing tomato grown with high nitrogen and water supply. Agricultural Water 481 Management 154, 52-58. DOI: 10.1016/j.agwat.2015.03.002 Gioacchini, P., Nastri, A., Marzadori, C., Giovannini, C., Vittori Antisari, L., Gessa, 482 483 C., 2002. Influence of urease and nitrification inhibitors on N losses from soils 484 fertilized with urea. Biology and Fertility of Soils 36, 129-135. DOI: 485 10.1007/s00374-002-0521-1 486 Halvorson, A.D., Bartolo, M.E., Reule, C.A., Abdel, B., 2008. Nitrogen effects on onion yield under drip and furrow irrigation. Agronomy Journal 100, 1062-1069. 487 488 DOI: 10.2134/agronj2007.0377 489 Houlton, B.Z., Bai, E., 2009. Imprint of denitrifying bacteria on the global terrestrial 490 biosphere. Proceedings of the National Academy of Sciences 106, 21713-21716. 491 DOI: 10.1073/pnas.0912111106 492 Huang, T., Gao, B., Hu, X.K., Lu, X., Well, R., Christie, P., Bakken, L.R., Ju, X.T., 493 2014. Ammonia-oxidation as an engine to generate nitrous oxide in an intensively

494	managed calcareous fluvo-aquic soil. Scientific Reports 4, 3950. DOI:
495	10.1038/srep03950
496	Huang, T., Yang, H., Huang, C., Ju, X., 2017. Effect of fertilizer N rates and straw
497	management on yield-scaled nitrous oxide emissions in a maize-wheat double
498	cropping system. Field Crops Research 204, 1-11. DOI: 10.1016/j.fcr.2017.01.004
499	Huang, X., Song, Y., Li, M., Li, J., Huo, Q., Cai, X., Zhu, T., Hu, M., Zhang, H.,
500	2012. A high-resolution ammonia emission inventory in China. Global
501	Biogeochemical Cycles 26,GB1030. DOI: 10.1029/2011GB004161
502	Ju, X., Xing, G., Chen, X., Zhang, S., Zhang, L., Liu, X., Cui, Z., Yin, B., Christie, P.
503	Zhu, Z., 2009. Reducing environmental risk by improving N management in
504	intensive Chinese agricultural systems. Proceedings of the National Academy of
505	Sciences of the United States of America 106, 3041-3046. DOI:
506	10.1073/pnas.0813417106
507	Ju, X.T., Kou, C.L., Zhang, F.S., Christie, P., 2006. Nitrogen balance and
508	groundwater nitrate contamination: Comparison among three intensive cropping

509	systems on the North China Plain. Environmental Pollution 143, 117-125. DOI:
510	10.1016/j.envpol.2005.11.005
511	Kennedy, T.L., Suddick, E.C., Six, J., 2013. Reduced nitrous oxide emissions and
512	increased yields in California tomato cropping systems under drip irrigation and
513	fertigation. Agriculture, Ecosystems & Environment 170, 16-27. DOI:
514	10.1016/j.agee.2013.02.002
515	Koocheki, A., Nassiri Mahallati, M., Moradi, R., Mansoori, H., 2014. Optimizing
516	water, nitrogen and crop density in canola cultivation using response surface
517	methodology and central composite design. Soil Science and Plant Nutrition 60,
518	286-298. DOI: 10.1080/00380768.2014.893535
519	Li, H., Wang, L., Qiu, J., Li, C., Gao, M., Gao, C., 2014. Calibration of DNDC model
520	for nitrate leaching from an intensively cultivated region of Northern China.
521	Geoderma 223-225, 108-118. DOI: 10.1016/j.geoderma.2014.01.002
522	Li, J., Rao, M., 2003. Field evaluation of crop yield as affected by nonuniformity of
523	sprinkler-applied water and fertilizers. Agricultural Water Management 59, 1-13.
524	DOI: 10.1016/S0378-3774(02)00123-3

525 Li, M., Wang, Y., Adeli, A., Yan, H., 2018. Effects of application methods and urea 526 rates on ammonia volatilization, yields and fine root biomass of alfalfa. Field 527 Crops Research 218, 115-125. DOI: 10.1016/j.fcr.2018.01.011 528 Liao, Y., Wu, W.L., Meng, F.Q., Smith, P., Lal, R., 2015. Increase in soil organic carbon by agricultural intensification in northern China. Biogeosciences 12, 529 530 1403-1413. DOI: 10.5194/bgd-11-16497-2014 531 Liu, C., Watanabe, M., Wang, Q., 2008. Changes in nitrogen budgets and nitrogen use 532 efficiency in the agroecosystems of the Changjiang River basin between 1980 and 2000. Nutrient cycling in agroecosystems 80, 19-37. DOI: 533 534 10.1007/s10705-007-9118-2 535 Liu, S., Zhang, X., Zhao, J., Zhang, J., Müller, C., Cai, Z., 2017. Effects of long-term 536 no tillage treatment on gross soil N transformations in black soil in Northeast 537 China. Geoderma 301, 42-46. DOI: 10.1016/j.geoderma.2017.04.008 538 Liu, X.J., Xu, W., Du, E.Z., Tang, A.H., Zhang, Y., Zhang, Y.Y., Wen, Z., Hao, T.X., 539 Pan, Y.P., Zhang, L., Gu, B.J., Zhao, Y., Shen, J.L., Zhou, F., Gao, Z.L., Feng, Z.Z., Chang, Y.H., Goulding, K., Collett, J.L., Jr., Vitousek, P.M., Zhang, F.S., 540

541	2020. Environmental impacts of nitrogen emissions in China and the role of
542	policies in emission reduction. Philosophical Transactions of the Royal Society A
543	Mathematical, Physical, and Engineering Sciences 378(2183), 20190324.
544	DOI: 10.1098/rsta.2019.0324
545	Luxhøi, J., Elsgaard, L., Thomsen, I.K., Jensen, L.S., 2007. Effects of long-term
546	annual inputs of straw and organic manure on plant N uptake and soil N fluxes.
547	Soil Use and Management 23, 368-373. DOI: 10.1111/j.1475-2743.2007.00126.x
548	Malhi, S.S., Nyborg, M., Solberg, E.D., Dyck, M.F., Puurveen, D., 2011. Improving
549	crop yield and N uptake with long-term straw retention in two contrasting soil
550	types. Field Crops Research 124, 378-391. DOI: 10.1016/j.fcr.2011.07.009
551	Maris, S.C., Teira-Esmatges, M.R., Arbones, A., Rufat, J., 2015. Effect of irrigation,
552	nitrogen application, and a nitrification inhibitor on nitrous oxide, carbon dioxide
553	and methane emissions from an olive (Olea europaea L.) orchard. Science of the
554	Total Environment 538, 966-978. DOI: 10.1016/j.scitotenv.2015.08.040
555	Meijide, A., Díez, J.A., Sánchez-Martín, L., López-Fernández, S., Vallejo, A., 2007.
556	Nitrogen oxide emissions from an irrigated maize crop amended with treated pig

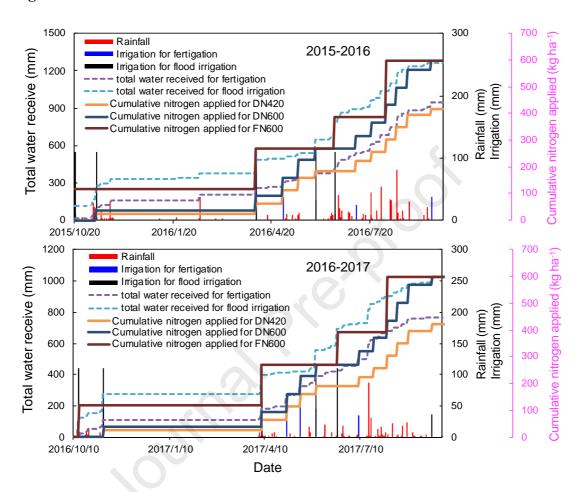
557	slurries and composts in a Mediterranean climate. Agriculture, Ecosystems &
558	Environment 121, 383-394. DOI: 10.1016/j.agee.2006.11.020
559	Olin, S., Lindeskog, M., Pugh, T.A.M., Schurgers, G., Wårlind, D., Mishurov, M.,
560	Zaehle, S., Stocker, B.D., Smith, B., Arneth, A., 2015. Soil carbon management in
561	large-scale Earth system modelling: implications for crop yields and nitrogen
562	leaching. Earth System Dynamics Discussions 6, 1047-1100. DOI:
563	10.5194/esdd-6-1047-2015
564	Pacholski, A., Cai, G., Nieder, R., Richter, J., Fan, X., Zhu, Z., Roelcke, M., 2006.
565	Calibration of a simple method for determining ammonia volatilization in the
566	field-comparative measurements in Henan Province, China. Nutrient Cycling in
567	Agroecosystems 74, 259-273. DOI: 10.1007/s10705-006-9003-4
568	Pacholski, A., Cai, G., Fan, X., Ding, H., Chen, D., Nieder, R., Roelcke, M., 2008.
569	Comparison of different methods for the measurement of ammonia volatilization
570	after urea application in Henan Province, China. Journal of Plant Nutrition and Soil
571	Science 171, 361-369. DOI: 10.1002/jpln.200625195

572	Peng, S., Yang, S., Xu, J., Luo, Y., Hou, H., 2011. Nitrogen and phosphorus leaching
573	losses from paddy fields with different water and nitrogen managements. Paddy &
574	Water Environment 9, 333-342. DOI: 10.1007/s10333-010-0246-y
575	Shen, J.L., Tang, A.H., Liu, X.J., Fangmeier, A., Goulding, K.T.W., Zhang, F.S.,
576	2009. High concentrations and dry deposition of reactive nitrogen species at two
577	sites in the North China Plain. Environmental Pollution 157, 3106-3113. DOI:
578	10.1016/j.envpol.2009.05.016
579	Sui, J., Wang, J., Gong, S., Xu, D., Zhang, Y., 2015. Effect of nitrogen and irrigation
580	application on water movement and nitrogen transport for a wheat crop under drip
581	irrigation in the North China Plain. Water 7, 6651-6672. DOI: 10.3390/w7116651
582	Tian, D., Zhang, Y., Mu, Y., Zhou, Y., Zhang, C., Liu, J., 2016. The effect of drip
583	irrigation and drip fertigation on $N_2\mathrm{O}$ and $N\mathrm{O}$ emissions, water saving and grain
584	yields in a maize field in the North China Plain. Science of the Total Environment
585	575, 1034-1040. DOI: 10.1016/j.scitotenv.2016.09.166

586	Trost, B., Klauss, H., Prochnow, A., Drastig, K., 2014. Nitrous oxide emissions from
587	potato cropping under drip-fertigation in eastern Germany. Archives of Agronomy
588	and Soil Science 60, 1519-1531. DOI: 10.1080/03650340.2014.903561
589	Xu, C., Han, X., Zhuge, Y., Xiao, G., Ni, B., Xu, X., Meng, F., 2020. Crop straw
590	incorporation alleviates overall fertilizer-N losses and mitigates N_2O emissions per
591	unit applied N from intensively farmed soils: An in situ ¹⁵ N tracing study. Science
592	of the Total Environment, 142884. DOI: 10.1016/j.scitotenv.2020.142884
593	Yan, G., Yao, Z., Zheng, X., Liu, C., 2015. Characteristics of annual nitrous and nitric
594	oxide emissions from major cereal crops in the North China Plain under alternative
595	fertilizer management. Agriculture Ecosystems & Environment 207, 67-78. DOI:
596	10.1016/j.agee.2015.03.030
597	Li, Y., Li, J., Gao, L., Tian, Y., 2018. Irrigation has more influence than fertilization
598	on leaching water quality and the potential environmental risk in excessively
599	fertilized vegetable soils. Plos One 13, e0204570. DOI:
600	10.1371/journal.pone.0204570

601	Zaman, M., Nguyen, M.L., Blennerhassett, J.D., Quin, B.F., 2008. Reducing NH ₃ ,
602	N_2O and NO_3^- -N losses from a pasture soil with urease or nitrification inhibitors
603	and elemental S-amended nitrogenous fertilizers. Biology & Fertility of Soils 44,
604	693-705. DOI: 10.1007/s00374-007-0252-4
605	Zhang, F., Cui, Z., Fan, M., Zhang, W., Chen, X., Jiang, R., 2011. Integrated soil-
606	crop system management: reducing environmental risk while increasing crop
607	productivity and improving nutrient use efficiency in China. Journal of
608	Environmental Quality 40, 1051-1057. DOI: 10.2134/jeq2010.0292
609	Zhang, X., Bol, R., Rahn, C., Xiao, G., Meng, F., Wu, W., 2017. Agricultural
610	sustainable intensification improved nitrogen use efficiency and maintained high
611	crop yield during 1980-2014 in Northern China. Science of the Total Environment
612	596-597, 61-68. DOI: 10.1016/j.scitotenv.2017.04.064
613	Zhang, X., Meng, F., Li, H., Wang, L., Wu, S., Xiao, G., Wu, W., 2019. Optimized
614	fertigation maintains high yield and mitigates N_2O and NO emissions in an
615	intensified wheat-maize cropping system. Agricultural Water Management 211,
616	26-36. DOI: 10.1016/j.agwat.2018.09.045

617 Zhang, X., Xiao, G., Li, H., Wang, L., Wu, S., Wu, W., Meng, F., 2020. Mitigation of 618 greenhouse gas emissions through optimized irrigation and nitrogen fertilization in 619 intensively managed wheat-maize production. Scientific Reports 10, 5907. DOI: 620 10.1038/s41598-020-62434-9 Zhao, Z., Wu, D., Bol, R., Shi, Y., Guo, Y., Meng, F., Wu, W., 2017. Nitrification 621 inhibitor's effect on mitigating N2O emissions was weakened by urease inhibitor in 622 623 calcareous soils. Atmospheric Environment 166, 142-150. DOI: 10.1016/j.atmosenv.2017.07.034 624 Zhou, Y., Zhang, Y., Tian, D., Mu, Y., 2017. The influence of straw returning on N₂O 625 626 emissions from a maize-wheat field in the North China Plain. Science of the Total 627 Environment 584-585, 935-941. DOI: 10.1016/j.scitotenv.2017.01.141


028	rigure captions:
629	Figure 1 Fertilization, irrigation, rainfall events, total water received and cumulative
630	nitrogen applied in fertilizer treatments during 2015–2017.
631	Figure 2 Changes of soil total N stock in 0–1m soil layer in (a1–2) DN0, (b1–2) FN0
632	(c1-2) DN420, (d1-2) DN600, and (e1-2) FN600. Error bars represent standard bars
633	(n=3). Red background denotes soil TN accumulative, black background denotes soil
634	TN loss. The experiment was conducted in May 2013 and our study was started in
635	October 2017. DN0: drip fertigation without N fertilizer application; FN0: flood
636	irrigation without N fertilizer application; DN420: optimal level of N fertilizer
637	application and drip fertigation; DN600: conventional level of N fertilizer application
638	and drip fertigation; and FN600: local farmers' average level of N fertilizer
639	application and flood irrigation.
640	Figure 3 N inputs, outputs, and net N surplus (total inputs-outputs) during 2015–2017
641	under DN420, DN600, and FN600. Note: Blue bars represent the standard error of
642	total N inputs, red bars represent the standard error of total N outputs, black bars
643	represent the standard error of net N surplus. Different letters above the bars indicate

644	significant differences at p <0.05. Definitions of different fertilizer management
645	regimes (i.e., DN420, DN600, and FN600) are given in caption of Figure 2.
646	Figure 4 The reactive N losses under different fertilization and irrigation treatments.
647	The relative data for FN420 (dashed line means the data was not monitored in situ)
648	was estimated detailed in Table S1. Red value means the positive (reduction ratio)
649	efficiency while blue value means the negative (increase ratio) efficiency. Means \pm
650	standard error.

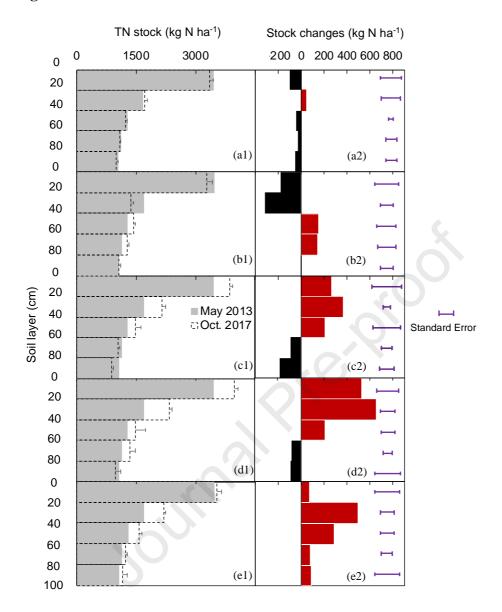
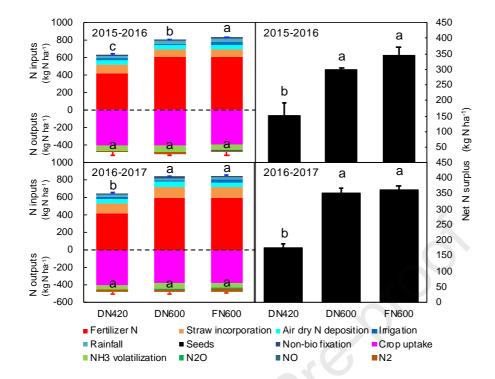

Figures list:

Figure 1


653

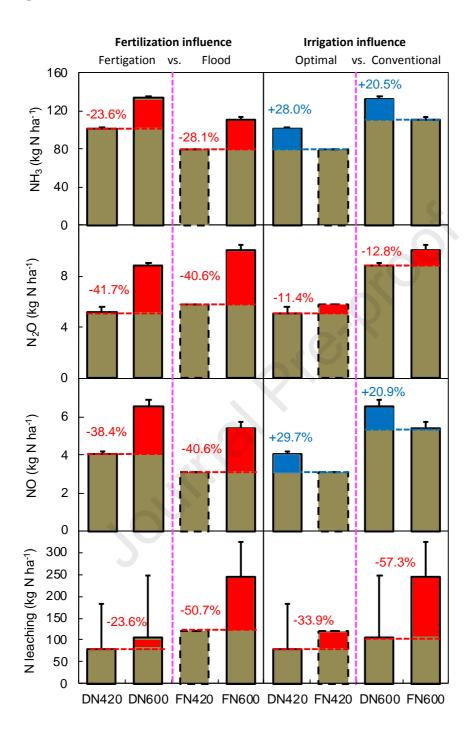

Figure 2

Figure 3

Figure 4

Tables list:

662

Table 1 Calculation of N balance under different fertilizer treatments in winter wheat–summer maize cropping system during 2015–2017.

Definitions of different fertilizer management regimes (i.e., DN420, DN600, and FN600) are given in caption of Figure 2.

	2015	2016		2016			2016	2017	- (2017		2		
	2015- Winter	2016 r wheat			er maiz	p.	2016- Winter	2017 r wheat		2017 Summ	er maize	2 cropping ye	ears	
			0 FN600						0FN600		0 N600 FN60	0 DN420	DN600	FN600
A: N inputs (kg N ha ⁻¹		021100	0111001	, 211.2	021100	0111000	, 211.12	021100		, 21112	01100011100	0 211.20	21,000	11,000
Fertilizer N	<u>/</u> 189	270	270	231	330	330	189	270	270	231	330 330	840	1200	1200
Straw incorporation	77.2	69.8	73.9	19.8	19.1	18.9	84.0	89.6	88.0	28.4	32.4 27.3	209.4±11.6a	210.9+10.8a	208.1+15.5a
Dry N deposition	37	37	37	18	18	18	37	37	37	18	18 18	110	110	110
Irrigation	11.1	11.1	29.5	4.7	4.7	7.4	18.7	18.7	29.5	5.4	5.4 7.4	39.9	39.9	73.9
Rainfall	9.4	9.4	9.4	19.4	19.4	19.4	5.8	5.8	5.8	13.7	13.7 13.7	48.3	48.3	48.3
Seeds	4.4	4.4	4.4	0.2	0.2	0.2	4.4	4.4	4.4	0.2	0.2 0.2	9.2	9.2	9.2
Non-bio fixation	10	10	10	5	5	5	10	10	10	5	5 5	30	30	30
Total	338.1	411.7	434.2	298.1	396.4	398.9	348.9	435.5	444.7	301.7	404.7401.6	1286.8±11.6	b 1648.3±10.8	a 1679.5±15.5a
B: N outputs $(kg ha^{-1})$	N													
Crop uptake	188.5	185.4	177.4	217.6	222.5	217.1	196.4	191.9	189.6	208.5	190.2191.5	811±63a	790±32a	776±36a
NH ₃ volatilization	21.8	26.4	25.4	35.3	47.1	37.1	11.3	14.6	13.6	33.5	45.3 34.6	101.9±1.5c	133.4±2.7a	110.7±2.9b
N_2O	0.79	1.01	0.87	1.46	2.13	2.67	0.92	1.11	1.7	1.97	4.56 4.84	5.14±0.43c	8.81±0.19b	10.08±0.40a
NO	0.73	1.04	0.86	0.80	0.59	1.14	0.81	1.29	1.12	1.53	1.74 1.47	4.02±0.13c	6.53±0.36a	5.38±0.31b
N_2	5.53	7.07	6.09	10.2	14.9	18.7	6.44	7.77	11.9	13.8	31.9 33.9	36.0±3.0c	61.7±1.3b	70.6±2.8a
Total	214.3	217.9	207.5	260.6	283.3	271.9	212.9	212.9	214.2	253.3	253.9247.0	958.1±58.7a	1000.5±31.2	a 972.3±39.6a
C: Increased amount of TN	of-	-	-	-	-	-	-	-	-	-		248.8±58.7a	543.1±154.0	a 462.1±76.8a

(kg N ha ⁻¹)													
D: N leaching		_		_		_	_		_	_	_	_	79.9±103.1a 104.6±144.0a245.0±79.6a
(kg N ha ⁻¹)	-	_	-	-	-	-	-	-	-	-	-	-	73.3±103.1a 104.0±144.0a243.0±73.0a

Table 2 Two-way ANOVA of the effects of irrigation and N fertilization on seasonal-/annual- NH₃ volatilization, N₂O and NO emissions. *, **
and *** represent the 0.05, 0.01 and 0.001 significance levels, respectively.

	Wheat season			Maize season			Annual				
	NH ₃	N ₂ O	NO	NH ₃	N ₂ O	NO	NH ₃	N ₂ O	NO	N	Soil TN
	volatilization	emissions	emissions	volatilization	emissions	emissions	volatilization	emissions	emissions	leaching	stock
Irrigation	0.0029**	0.3744	0.1174	0.0000***	0.0329*	0.0004***	0.0000***	0.0041**	0.0033**	0.3777	0.6354
Fertilization	0.1459	0.2719	0.0028**	0.0000***	0.0062**	0.0001***	0.0000***	0.0001***	0.0000***	0.4657	0.0218*
Irrigation×Fertilization	0.7996	0.9184	0.4587	0.9818	0.8840	0.1208	0.9165	0.3383	0.5435	0.6226	0.7008

Table 3 Relationship between N₂O, NO, NH₃, N₂O+NO fluxes and soil NH₄⁺-N,

NO₃⁻-N, NH₄⁺-N+NO₃⁻-N concentration in 7 days after N fertilization and irrigation

events. Symbols of * and ** stand for significant at p<0.05 and p<0.01, respectively.

	N ₂ O flux	NO flux	N ₂ O+NO fluxes	NH ₃ flux
NH ₄ ⁺ -N	0.443**	0.345*	0.410**	0.323*
NO ₃ ⁻ -N	0.339*	0.165	0.251	314*
NH ₄ ⁺ -N+NO ₃ ⁻ -N	0.443**	0.262	0.357*	0.380**
WFPS	0.096	-0.222	-0.134	-0.100

HIGHLIGHTS

- Soil N residual was accumulated in top soil under fertigation
- Gaseous N emissions were highly stimulated by N fertilization
- N leaching was mainly affected by irrigation but not N fertilization measurement
- DN420 significantly decreased soil N losses and achieved a higher crop N uptake

Conflict of interest:

The authors declared that there have no conflicts of interest to this work.