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a b s t r a c t 

Numerous neuroimaging studies have investigated the neural mechanisms of two mutually independent yet 

closely related cognitive processes aiding humans to navigate complex societies: social hierarchy-related learning 

(SH-RL) and social hierarchy-related interaction (SH-RI). To integrate these heterogeneous results into a more 

fine-grained and reliable characterization of the neural basis of social hierarchy, we combined coordinate-based 

meta-analyses with connectivity and functional decoding analyses to understand the underlying neuropsycholog- 

ical mechanism of SH-RL and SH-RI. We identified the anterior insula and temporoparietal junction (dominance 

detection), medial prefrontal cortex (information updating and computation), and intraparietal sulcus region, 

amygdala, and hippocampus (social hierarchy representation) as consistent activated brain regions for SH-RL, 

but the striatum, amygdala, and hippocampus associated with reward processing for SH-RI. Our results provide 

an overview of the neural architecture of the neuropsychological processes underlying how we understand, and 

interact within, social hierarchy. 
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. Introduction 

Social hierarchies — referring to a coherent and accepted rank of
 group of individuals along one or more social dimensions — are
biquitous in the biological world ( Qu et al., 2017 ). This rank always
as a close link with ones’ grasp of resources ( Berger et al., 1980 ).
hus, social hierarchy implied valuable information for individual well-
eing, socializing, and development ( Boyce, 2004 ; Cheng et al., 2013 ;
apolsky, 2005 ). Given its complexity as well as its importance and
ervasiveness to human society, the human need to understand social
ierarchies around them and use the knowledge to guide their social
ife. This also gains an advantage for social hierarchical structure and
akes it fluent social stimuli that are processed more easily in cognitive
rocessing of seeing, understanding, learning, and remembering, com-
ared with other types of social structures, such as more flat structures
 Zitek and Tiedens, 2012 ). Meanwhile, as a common social organiza-
ion, social hierarchy provides a strong force to natural selection. Indi-
iduals who display a superior ability in understanding social hierarchy
nd modifying behavior consequently can often be found to gain an
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dge in terms of survival and development ( Gilbert, 2000 ; Boyce, 2004 ;
apolsky, 2005 ; Cheng et al., 2013 ; Watanabe and Yamamoto, 2015 ).
wo mutually independent yet closely related cognitive processes play
rucial roles in aiding humans to navigate complex societies: (i) the
rocess of social hierarchy learning and (ii) the process of social hi-
rarchy guiding behaviors and social interaction ( Chiao et al., 2008 ;
atanabe and Yamamoto, 2015 ; Olsson et al., 2020 ). Numerous studies

ave used neuroscientific techniques to investigate the neural mecha-
isms involved in these two forms of social hierarchy-related processes.
he goal of the current meta-analysis study was to reveal their neu-
al mechanisms by answering the following two questions: How is so-
ial hierarchical knowledge acquired by individuals? How is the social
ierarchy used to modulate behaviors and interactions? The following
ection will elaborate on these two fundamental social hierarchy-related
rocesses — social hierarchy-related learning ( SH-RL ) and social hierarchy-

elated interaction ( SH-RI ). 

.1. SH-RL phase 

The ability to obtain social hierarchical knowledge enables social
pecies to overcome the pressures of navigating a fast-changing and
ember 2021 
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omplex society ( Insel and Fernald, 2004 ). One of its primary contri-
utions is in aiding decisions that engage fundamental modes of social
nteraction such as fight or flight decisions in animals and whether to
ompete or cooperate in humans. Social hierarchy learning paves the
ay for subsequent behaviors and social interactions. 

Both animals and humans can obtain social hierarchical knowledge
o guide their behaviors through dominance cues, dyadic competition,
nd observational learning ( Fernald, 2014 ; Qu et al., 2017 ). Detect-
ng social rank by interpreting dominance cues could be regarded as
 rapid locating process, which is more automatic, such as forming an
nitial impression of others’ social rank through physical characteristics
r appearance. Multiple sources of information such as body size, fa-
ial features, emotional expressions, postures, and occupational status
ontribute to social hierarchy detecting at a glance ( Chiao et al., 2008 ,
009 ; Mattan et al., 2017 ). For instance, owners of luxury sports cars
ust be rich men, and realizing this fact is not costly. Developmental

tudies have shown that even infants can derive dominance information
rom some dominance cues ( Cummins, 2000 ; Boyce, 2004 ; Brey and
hutts, 2015 ; Charafeddine et al., 2015 ). Moreover, an event-related po-
entials (ERP) brain study has indicated that people can perceive dom-
nance cues from aggression-related emotional expressions in the early
emporal stages of information processing and detect social dominance
ues from facial expressions later on ( Chiao et al., 2008 ). Another study
robed the neural electrophysiological responses of participants to faces
ccompanied by information of occupational social status and found that
aces with high-status occupation elicited a larger late positive potential
LPP) ( Breton et al., 2019 ). Through rapid evaluation, individuals ap-
ear to be able to detect the social position of others and rapidly adjust
ubsequent behaviors. 

Since dominant cues are insufficient in understanding compli-
ated hierarchical relationships within intricate human social networks
 Todorov et al., 2008 ; Kumaran et al., 2012 ), humans also employ a
ore refined updating process which dynamically constructs social hi-

rarchical structure in their mind through learning the feedback of the
inary comparison in a goal-directed manner. Direct (e.g., competi-
ion) and indirect (e.g., observational learning) comparisons are two
ays in which a precise and explicit social hierarchical map can be

ormed. Direct competition leads to the emergence of social hierarchy
 Fernald, 2014 ; Qu et al., 2017 ), with potentially high risk and high
oss, which is the only way to inverse or change the inherent hierar-
hical structure ( Paz-y-Miño et al., 2004 ; Fernald, 2014 ;). The indirect
omparison refers to inferring target information through observation.
any species including nonhuman primates, rats, and birds have abil-

ties to make transitive inferences, and it has also been reported that
sh learn hierarchical relationships by observing conflicts around them
 McGonigle and Chalmers, 1977 ; Roberts and Phelps, 1994 ; Bond et al.,
003 ; Grosenick et al., 2007 ). 

The brain circuits involved in the process of rapidly locating social
ierarchy information and the more refined process of updating social
ierarchy information have been well documented in previous research
 Qu et al., 2017 ). The first process is rapid and involves the detection
f social hierarchy cues and mapping dominance cues to social hierar-
hical structures. Detection is a major neural function supported by the
alience network which may also serve to detect dominance cues for
his rapid locating process ( Bressler and Menon, 2010 ; Menon, 2015 ).
ne study using a facial judgment task found that, relative to simple
erceptual judgments of facial features, judgments of social dominance
ctivated hub regions associated with the salience network and the an-
erior insula (AI) in particular ( Smith et al., 2016 ). 

The second process includes dynamic updating which is driven by
eedback-based trial-by-trial learning. Those hidden features of updat-
ng and computing let researchers link this process to neural compu-
ational modeling. Researchers have applied both reinforcement learn-
ng (RL) and Bayesian computational models to uncover the neu-
al mechanism for the updating process of social dominance learning
 Kumaran et al., 2016 ; Ligneul et al., 2016 ). RL models emphasize the
2 
rocess of creating relationships between stimuli and outcomes, which
an be applied for social hierarchy learning ( Suzuki et al., 2012 ; Seo and
ee, 2017 ; Qu et al., 2017 ). In contrast, Bayesian approaches em-
hasize decision making via probabilistic representations of the world
 Knill and Pouget, 2004 ; Khalvati et al., 2016 ; Annis and Palmeri, 2017 ;
aker et al., 2017 ), and social hierarchy can be considered as a hid-
en variable that can be learned through the likelihood of observation
 Qu et al., 2017 ; FeldmanHall and Shenhav, 2019 ). As a powerful tool to
eveal the process of encoding, the neurocomputational approach pro-
ided more essential knowledge on this issue. In terms of observational
earning, the medial prefrontal cortex (mPFC) is engaged in the learning
f rank, computing estimates of the rank of others, and updating knowl-
dge about one’s own place in the hierarchy ( Kumaran et al., 2016 ).
ith regards to dyadic competition, the rostromedial PFC (rmPFC) is

hought to represent social rank, while the ventromedial PFC (vmPFC)
nd striatum encode successes and failures, respectively ( Ligneul et al.,
016 ) — emphasizing the foundational role of the mPFC in dynamic
pdating. 

To establish the social hierarchical structure in one’s own social
nowledge frame, the hippocampus and intraparietal sulcus region (IPS)
re credited respectively for cognitive processes abut structure and mag-
itude — functions closely linked with mental constructing and repre-
enting of social hierarchy ( Cohen et al., 2007 ; Tavares et al., 2015 ). 

Overall, based on previous research, the learning phase of social hi-
rarchy presumably depends on three functions and its corresponding
upporting brain regions: (i) detecting (AI); updating (mPFC), and rep-
esenting (hippocampus and IPS) of social hierarchy information. 

.2. SH-RI phase 

In daily life, social hierarchical information serves to guide adap-
ive behaviors and thus promotes a more harmonious social existence.
ehaviors and interactions in society modulated by social hierarchy
ave been observed in humans (i.e., adults but also children) as well
s nonhuman primates. These behaviors and interactions have been
ound to touch on a wide range of cognitive functions, including atten-
ion, socio-emotional functioning, and decision-making ( Dugatkin and
lan, 1997 ; Gianaros et al., 2008 ; Boksem et al., 2012 ; Breton et al.,
014 ; Santamaria-Garcia et al., 2014 ; Feng et al., 2015 ; Feng et al.,
016 ; Hu et al., 2014 ; Hu et al., 2016 ). 

For example, a study on empathy found that empathic responses to
he pain of others are modulated by social hierarchy — showing ac-
ivities in AI and medial cingulate cortex as a function of social status
 Feng et al., 2016 ). Further, in the ultimatum game, people with high
ocial status are more likely to reject unfair offers — mirrored by activ-
ties in the amygdala and thalamus — than those from a lower status
 Hu et al., 2016 ). Moreover, after learning the hierarchical structure of
mployees from two companies, people were asked to judge which com-
any these persons belong to. Although this simple task did not explicitly
equire any knowledge about rank, however, activities in the amygdala
nd anterior hippocampus generated rank-related signals automatically
 Kumaran et al., 2016 ). 

Some researchers suggested that the dominance of higher status
ay be associated with the processing of reward ( Zink et al., 2008 ;

reeman et al., 2009 ; Ly et al., 2011 ; Santamaría-García et al., 2015 ). For
xample, an association between neural responses to social hierarchy
nd brain morphology was reported in the caudate nucleus — a region
mplicated in reward processing — combining ERP with structural MRI
 Santamaría-García et al., 2015 ). Superior rank faces compared with in-
erior rank faces induced a larger N170 component, implying a higher
ensitivity in the striatum to superior social rank. The same pattern of
symmetric value assignment according to social rank can be observed
n nonhuman primates. For example, monkeys sacrifice juice rewards to
iew the faces of high-status monkeys despite being thirsty but require
uice payment to view the faces of low-status monkeys ( Deaner et al.,
005 ). 
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Fig. 1. Flowchart of literature search and selection for meta-analysis. 

SH-RL, social hierarchy-related learning; SH-RI, social hierarchy-related inter- 

action. 
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Overall, based on previous evidence, the impacts of social hierarchy
n interactions and behaviors are probably mediated by (i) reward pro-
esses (e.g., striatum) and additional processes regulating the reward
ircuit (e.g., amygdala, hippocampus). 

.3. The present study 

A plethora of studies in the field of social hierarchy learning and in-
eracting provide the opportunity for deeper exploration. One issue that
ight arise from various tasks or paradigms that have been employed

o investigate social hierarchy is the possibility that unrelated activa-
ion mingled in the target neural mechanism in a single study. While in
he meantime, the neural patterns produced by these key processes that
ccur consistently across studies must be characterized in some quanti-
ative way. Another issue that remains open is the underlying psycholog-
cal functions of brain regions or networks engaged in social hierarchy-
elated processing. Thus, we implemented a meta-analysis approach that
as designed to quantitatively synthesize previous neuroimaging find-

ngs regarding the two social hierarchy-related processes: SH-RL and
H-RI. By integrating neuroimaging studies that have investigated these
rocesses, we can gain a more reliable and precise picture of the neural
asis of how humans understand and respond to social hierarchy. 

In this study, we implemented separate neuroimaging meta-analyses
o explore the two neural mechanisms supporting SH-RL and SH-RI.
irst, we identified the consistent activated brain region associated with
wo social hierarchy-related processes by conducting coordinate-based
eta-analyses using an activation likelihood estimation (ALE) approach

 Eickhoff et al., 2009 ). Second, we investigated the connectivity among
rain regions by performing task-based meta-analytic connectivity map-
ing (MACM) and task-free resting-state functional connectivity (RSFC).
inally, based on a large-scale database, we employed functional de-
oding (FD) on mental processes associated with identified regions to
nderstand their psychological functions ( Bellucci et al., 2020 ). 

. Methods 

.1. Meta-analysis 

.1.1. Literature search and selection 

First, we performed a literature search of online databases including
ubMed, ISI Web of Science, and Google Scholar. The following rele-
ant topic items were entered into these databases: social hierarchy,
ocial rank, social status, social standing, social-economic status, and
ominance. These were combined with the following terms describing
easurement technique terms: fMRI, functional MRI, and PET. In addi-

ion, we also searched bibliographies and citation indices in pre-selected
apers. 

Studies generated from these searches were further assessed accord-
ng to the following criteria ( Fig. 1 ): (i) research content correlated with
ocial hierarchy; (ii) fMRI or PET was used as the imaging modality;
iii) subjects were free from psychiatric and neurological diagnoses; (iv)
hole-brain general-linear-model-based analyses (rather than a region
f interest [ROI] analyses) were applied; (v) activation was presented in
 standardized stereotaxic space (Talairach or Montreal Neurological In-
titute, MNI). Using GingerALE software with Brett’s mni2tal algorithm,
 conversion to the MNI coordinates was employed for studies that re-
orted in Talairach coordinates ( Lancaster et al., 2007 ). 

Articles that fulfilled the above criteria were assigned — either to
H-RL or SH-RI — based on the category of cognitive processing in-
uced by experimental tasks. Since some studies included more than
ne task and explored both modes of processing, experiments of these
tudies were assigned separately according to the mode of processing
SH-RL vs. SH-RI). We labeled in this study any process of judging or es-
imating the position of others within a social hierarchy through various
orms of information as the process related to SH-RL. SH-RL describes
he transition of social hierarchy knowledge from unknown to known or
3 
rom vagueness to clarity. During this phase, participants often need to
roduce a judgment, estimation, or choice regarding the social rank of
thers in the experimental context. As the second process of interest, SH-
I examined or described any process that involved interacting within a
ocial hierarchy environment. SH-RI implies that an individual’s activi-
ies or behaviors are, in some way, modified by the social hierarchy. For
nstance, social hierarchy information is the known condition within the
xperimental setting or has been learned by participants, and the influ-
nce of social hierarchy is the primary focus in this process. 

By applying a filter on search results according to the inclu-
ion/exclusion and category criteria, we were left with a total of 32
ublished studies. Thirteen of these studies examined the process of SH-
L and 22 examined the process of SH-RI ( Table 1 ). 

.1.2. Activation likelihood estimation (ALE) analysis 

We conducted a coordinate-based meta-analysis by using the ALE al-
orithm (GingerALE software, version 3.0.2) ( Eickhoff et al., 2009 ). This
lgorithm identified areas that showed convergence of foci across dif-
erent functional or structural experiments to obtain brain regions with
 spatial association that was higher than random ( Turkeltaub et al.,
002 ; Laird et al., 2005 ). This method treats reported foci not as sin-
le points, but rather as spatial three-dimensional Gaussian probability
istributions. Widths of foci were based on empirical estimates of the
patial uncertainty based on the between-subject and between-template
ariability of the neuroimaging data ( Eickhoff et al., 2009 ). 

Individual modulated activation (MA) map was created firstly by tak-
ng the maximum probability associated with any one focus (the closest
ne) for each voxel within each included experiment ( Turkeltaub et al.,
012 ). This modified ALE algorithm was able to reduce the influence
f multiple foci from a single on individual MA value of a single voxel
 Turkeltaub et al., 2012 ). Next, a union of individual MA maps was gen-
rated across selected studies by computing it against a null-distribution
f random spatial associations between studies using a non-linear his-
ogram integration algorithm ( Eickhoff et al., 2012 ; Turkeltaub et al.,
012 ). The resulting p value maps were thresholded using the cluster-
evel family-wise error (cFWE) correction at p < 0.05 with a cluster
efining threshold of p < 0.001 and 10,000 permutations ( Eickhoff et al.,
012 ). 

A total of 49 experiments (i.e. contrasts) examined the process of SH-
L (261 foci, 1044 subjects, average of 21.3 subjects per experiment)
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Table 1 

Summary of studies included for the coordinate-based meta-analysis. 

Study N Task Contrast 

Social hierarchy-related learning 

Ligneul et al. (2016) 28 competitive task parametric analysis, correlation with positive competitive prediction 

errors 

parametric analysis, correlation with negative competitive prediction 

errors 

parametric analysis, correlation with social dominance status 

intermediate opponent win (control failure) > intermediate lose 

(control success) 

Kumaran et al. (2016) 

28 transitive inference task parametric analysis, correlation with the difference in power (test trials) 

parametric analysis, correlation with hierarchy update index (training 

trials) 

parametric analysis, correlation with hierarchy update index in the self 

condition (training trials) 

parametric analysis, negative correlation with entropy over item pairs 

(training trials): main effect self and other 

parametric analysis, positive correlation with entropy over item pairs 

(training trials): main effect self and other 

parametric analysis, chosen power (training trials): main effect of self 

and other conditions 

parametric analysis, chosen power in the self condition (training trials) 

parametric analysis, chosen power in the other condition (training 

trials) 

parametric analysis, chosen power (training trials): self > other 

condition 

Kumaran et al. (2012) 

25 transitive inference task parametric analysis, correlation with the inference score index in the 

social condition 

parametric analysis, correlation with the inference score index in the 

social > non-social condition 

parametric analysis, correlation with correct probability in the social 

condition 

parametric analysis, correlation with correct probability in the social > 

non-social condition 

Kishida et al. (2012) 27 Ranked group IQ task rank_beginning > rank_end 

parametric analysis, negative correlation with the rank change 

parametric analysis, positive correlation with the rank change 

Cloutier and 

Gyurovski (2014) 

13 self-referential social status judgment task status type by status level interaction 

status type main effect 

status level main effect 

Farrow et al. (2011) 22 facial viewing task social hierarchy > fame, age, gender and ‘number. higher / lower’ 

Chiao et al. (2008) 7 facial viewing task dominant > neutral faces 

submissive > neutral faces 

Marsh et al. (2009) 30 status poses viewing task hierarchy cue 

hierarchy cue × stimulus gender 

hierarchy cue × stimulus gender × subject gender 

hierarchy cue × subject gender 

Smith et al. (2016) 23 social judgment task social judgment > perceptual judgment 

Freeman et al. (2009) 34 display viewing task dominant > subordinate 

social hierarchy (dominant, subordination) × culture (Japanese, 

American) 

Chiao et al. (2009) 12 comparison task uniform comparison 

face comparison 

car comparison 

uniform distance 

face distance 

car distance 

number (close-far) > face (close-far) 

uniform (close-far) > number (close-far) 

face (close-far) > number (close-far) 

face (close-far) > car (close-far) 

car (close-far) > number (close-far) 

car (close-far) > uniform (close-far) 

car (close-far) > face (close-far) 

Mason et al. (2014) 19 status judgment task status judgments > weight judgments 

Haaker et al. (2016) 23 observation of confrontations parametric analysis, correlation with dominance rank 

parametric analysis, correlation with increasing hierarchy knowledge 

Social hierarchy-related interaction 

Feng et al. (2016) 22 sensory stimulation viewing superior > inferior 

inferior > superior 

(inferior_pain–inferior_no pain) > (superior_pain–superior_no pain) 

(inferior_Pain–Inferior_no pain) < (superior_pain–superior_no pain) 

Op de Macks 

et al. (2017) 

58 jackpot task social rank feedback > monetary gain feedback 

( continued on next page ) 

4 
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Table 1 ( continued ) 

Study N Task Contrast 

social rank feedback > monetary loss feedback 

social rank play > monetary play 

Kim et al. (2016) 28 infant cry paradigm socioeconomic status effect 

Kim et al. (2015) 40 infant cry paradigm socioeconomic status × gender in (baby cry–white noise) 

Zheng et al. (2017) 72 allocate money task low rank (unfair–fair)– high rank (unfair–fair) 

unfair low rank (reject–accept)–unfair high rank (reject–accept) 

unfair high rank (reject–accept)–unfair Low rank (reject–accept) 

Muscatell et al. (2018) 

23 face observation task correlation with subjective social status in black faces observe > white 

faces observe 

correlation with subjective social status in black faces observe > 

baseline 

correlation with subjective social status in white faces observe > 

baseline 

Kumaran et al. (2016) 

28 categorization task correlation with person rank 

Zink et al. (2008) 24 reaction time task superior player > inferior player 

Zink et al. (2008) 24 visual discrimination task superior player > inferior player 

subject lost and inferior won > subject lost and inferior lost 

subject won and superior lost > subject won and superior won 

Ligneul et al. (2017) 28 passive presentation task superior faces > inferior faces 

Kumaran et al. (2012) 

25 bid task parametric analysis, correlation with person rank 

Hu et al. (2016) 23 ultimatum game (low status unfair > low status fair) > (high status unfair > high status 

fair) 

high status unfair > low status unfair 

Erk et al. (2002) 12 attractiveness rating task sports cars > small cars 

sports cars > limousines 

limousines > sports cars 

limousines > small cars 

Cloutier et al. (2014) 20 impression formation task status type × status level 

status type main effect 

status level main effect 

Sheridan et al. (2012) 

18 stimulus response learning task high socioeconomic status (novel rule > familiar rule) > low 

socioeconomic status (novel rule > familiar rule) (all trial) 

low socioeconomic status (novel rule > familiar rule) > high 

socioeconomic status (novel rule > familiar rule) (all trial) 

high socioeconomic status (novel rule > familiar rule) > low 

socioeconomic status (novel rule > familiar rule) (early trial) 

low socioeconomic status (novel rule > familiar rule) > high 

socioeconomic status (novel rule > familiar rule) (early trial) 

Mattan et al. (2018) 60 face viewing task perceived status main effect (negative correlation with external 

motivation, with internal motivation covariate) 

perceived status main effect (negative correlation with external 

motivation, without internal motivation covariate) 

perceived status main effect (negative correlation with internal 

motivation, with external motivation covariate) 

perceived status main effect (negative correlation with internal 

motivation, with external motivation covariate) 

race × status 

Kim et al. (2013) 49 emotion regulatory task positive correlation with the family income-to-needs ratio in the 

reappraise–maintain 

Noble et al. (2006) 38 letter string one-back task socioeconomic status × phonological awareness 

Muscatell et al. (2016) 

31 social stress task negative correlation with subjective social status 

positive correlation with subjective social status 

Cloutier et al. (2012) 19 impression formation task high > low morale status 

low > high financial status 

low > high financial status 

Quirin et al. (2013) 17 movie watching task power motive viewing 

Haaker et al. (2016) 23 confrontation task fear acquisition with dominant face > no fear acquisition with 

intermediate face (categorial) 

fear acquisition with subordinate face > no fear acquisition with 

intermediate face (categorial) 

fear acquisition dominant face > no fear acquisition with intermediate 

face (change over time) 

fear extinction dominant face > fear extinction subordinate face 

fear acquisition with dominant face > fear acquisition with subordinate 

face (reinstatement) 

N , number of participants. 

5 
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e  
nd a total of 53 experiments examined the process of SH-RI (282 foci,
656 subjects, average of 31.2 per experiment). 

.1.3. Conjunction and contrast analyses 

To explore convergences and differences between the meta-analytic
ndings of SH-RL and SH-RI, we conducted conjunction and contrast
nalyses. The conjunction analysis was performed by applying the min-
mum conjunction of ALE results of SH-RL and SH-RI with a cFWE < 0.05
nd a voxelwise, cluster-forming threshold of p < 0.001 ( Nichols et al.,
005 ). 

Next, contrast analyses were conducted to identify the statistically
ignificant differences in the convergence between SH-RL and SH-RI.
ontrast analyses were based on voxelwise differences of ALE maps of
H-RL and SH-RI. To test its statistical significance, permutation tests
ere conducted as follows. All foci contributing to these two ALE maps
ere pooled and randomly divided into two groups of the same size as

he original data sets ( Eickhoff et al., 2011 ). Based on each new data
et, an ALE image was created, then subtracted from the other and com-
ared with the original data. After 25,000 times permutations, a null-
istribution of difference in the ALE values between two SH-RL and SH-
I was created. Then the true difference in the ALE values was exam-

ned against the voxel-wise null-distribution, yielding a p value for the
ifference at each voxel under label exchangeability. The resulting p
alues were thresholded at a posterior probability of p > 95% for true
ifferences and with an additional cluster extent threshold of cluster size
 200 mm 

3 . 

.2. Functional connectivity analyses 

.2.1. Task-based connectivity: meta-analytic connectivity modeling 

MACM) analyses 

MACM analyses were performed to examine functional co-activation
atterns of pre-defined ROIs involved in SH-RL and SH-RI (Note that
e extracted brain regions of the meta-analytic clusters as ROIs.)
 Robinson et al., 2010 ; Eickhoff et al., 2011 ; Langner et al., 2014 ). To
o this analysis, whole-brain peak coordinates from all eligible stud-
es, i.e. whole-brain neuroimaging studies reporting activation in stan-
ard stereotaxic space in a healthy population, were downloaded from
rainMap ( http://www.brainmap.org/ ) if at least one focus of activa-
ion within each ROI was reported. Studies that investigated effects
n age, sex, handedness, and interventions (e.g., pharmacological or
raining-based), as well as clinical populations, were excluded. Coor-
inates were then analyzed using the ALE algorithm to detect areas of
onvergence of co-activation with each seed. Finally, the ALE maps were
hresholded using a cFWE correction ( p < 0.05) with a cluster-forming
hreshold of p < 0.001 using 10,000 permutations for correcting multi-
le comparisons. 

Information of MACM analyses — i.e., ROI, the number of ex-
eriments, subjects, and foci that the functional co-activation pattern
roduced for each ROI — were included as follows: ROIs related
o SH-RL consisted of left amygdala/hippocampus cluster (L amyg-
ala/hippocampus) (338 experiments, 5112 subjects, 4099 foci), right
mygdala/hippocampus cluster (R amygdala/hippocampus) (316 ex-
eriments, 4900 subjects, 3712 foci), medial prefrontal cortex (mPFC)
143 experiments, 2173 subjects, 1766 foci), left anterior insula (LAI)
581 experiments, 8661 subjects, 8803 foci), right anterior insula (RAI)
406 experiments, 6140 subjects, 5924 foci), left intraparietal sul-
us region (LIPS) (407 experiments, 5940 subjects, 5878 foci), right
ntraparietal sulcus region (RIPS) (250 experiments, 3789 subjects,
643 foci) and right temporo-parietal junction (RTPJ) (96 experiments,
389 subjects, 1412 foci). ROIs related to the SH-RI consisted of L
mygdale/hippocampus (212 experiments, 3340 subjects, 2550 foci),
 amygdale/hippocampus (280 experiments, 4394 subjects, 3391 foci),

eft fusiform gyrus (LFG) (194 experiments, 2676 subjects, 2884 foci)
nd striatum (214 experiments, 3635 subjects, 2994 foci). 
6 
.2.2. Task-free connectivity: resting-state functional connectivity (RSFC) 

nalyses 

RSFC analyses were run separately using the same ROIs as for
he MACM analyses as seed regions. These analyses were based
n resting-state fMRI images of 192 healthy volunteers obtained
rom the enhanced Nathan Kline Institute-Rockland Sample (NKI-RS:
ttp://fcon_1000.projects.nitrc.org /indi/enhanced/) ( Nooner et al.,
012 ). The sample of enhanced NKI-RS is representative of the general
opulation across age, ethnicity, and socioeconomic status ( Horn and
lankenburg, 2016 ). The enhanced NKI-RS dataset has been widely used
y many meta-analysis studies and made numerous contributions to
SFC analyses ( Krall et al., 2015 ; Gu et al., 2019 ; Wong et al., 2019 ).
unctional images were acquired by a Siemens TimTrio 3 T scanner
sing a gradient-echo, echo-planar imaging (EPI) pulse sequence with
epetition time = 1.4 s, echo time = 30 ms, flip angle = 65, voxel
ize = 2.0 × 2.0 × 2.0 mm; number of slices = 64. 

Using FIX (FMRIB’s ICA-based Xnoiseifer, version 1.061 as imple-
ented in FSL 5.0.9) ( Griffanti et al., 2014 ; Salimi-Khorshidi et al.,
014 ), physiological and movement artifacts were removed from the
esting-state data by decomposing the data into independent compo-
ents and identifies noise components employing a large number of
istinct spatial and temporal features via pattern classification. Unique
ariance related to the artefactual independent components was re-
ressed from the data together with 24 movement parameters (including
erivatives and second-order effects as previously described and evalu-
ted; cf. Satterthwaite et al. 2013 ). Using SPM8 (Wellcome Trust center
or Neuroimaging, London) and in-house Matlab scripts, images were
hen further preprocessed as following described. The first four scans
ere excluded before further analyses, the remaining images were cor-

ected for head movement using a two-pass (alignment to the initial
olume followed by alignment to the mean after the first pass) affine
egistration. For each subject, the mean image was spatially normalized
o the ICBM-152 reference space using the “unified segmentation ” ap-
roach ( Ashburner and Friston, 2005 ). 

Applying resulting deformation parameters, the individual func-
ional images were subsequently smoothed with a 5-mm full width at
alf maximum Gaussian kernel to improve the signal-to-noise ratio and
ompensate for residual anatomic variations. The time-course of each
eed was extracted by computing the first eigenvariate of the time-series
f all voxels within 5 mm of the seed coordinates. Variance explained
y the mean white matter and cerebral spinal fluid signal were removed
rom the time series to reduce spurious correlations, which was sub-
equently band-pass filtered preserving frequencies between 0.01 and
.08 Hz. The functional connectivity map of each seed was correlated
ith the time-series of all other gray-matter voxels across the brain us-

ng Pearson correlation. Correlation coefficients were transformed into
isher’s z-scores, which were entered in a second-level ANOVA for group
nalysis, including age and sex as covariates of no interest. Statistical
ignificance was assessed by non-parametric permutation-based infer-
nce and cluster-level thresholded at p < 0.05 to correct for multiple
omparisons. 

.2.3. Consensus connectivity maps 

The following analyses were performed to explore the functional
onnectivity networks by identifying the brain regions that are strongly
onnected to multiple brain regions as defined by ALE analyses. It is
efined as brain areas that showed robust connectivity with multiple
onsensus functional connectivity maps generated by conjunction anal-
ses of MACM and RSFC for each ROI. Specifically, based on MACM
nd RSFC analyses, task-dependent and task-independent whole-brain
unctional connectivity maps were generated for each ROI for SH-RL
nd SH-RI separately. For each ROI, the conjunction map between
ACM and RSF was generated by using the minimum statistic approach

 Nichols et al., al.,2005 ) — leading to eight connectivity maps for SH-RL
nd four for SH-RI, showing the brain areas consistently interacting with
ach ROI across rest and task states (cf. Clos et al., 2014 ; Hardwick et al.,

http://www.brainmap.org/
http://fcon_1000.projects.nitrc.org
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015 ). Finally, functional connectivity networks involved in processes
f SH-RL and SH-RI delineated by identifying all regions that were sig-
ificantly connected with multiple ROIs, specifically the brain regions
n which overlapped with the consensus connectivity maps of at least
alf of the ROIs with an additional extent-threshold of 10 continuous
oxels ( Camilleri et al., 2018 ; Amft et al., 2014 ). 

.3. Functional decoding (FD) analysis 

Functional decoding was run for the same ROIs that were identified
n ALE analyses. The function profile of each ROI of SH-RL and SH-RI
ere characterized based on behavioral domain meta-data categories in

he BrainMap database ( http://brainmap.org/scribe/ ). These categories
escribe the experimental properties of each study stored in the database
ccording to different mental processes, such as action, emotion, cogni-
ion, perception, and interoception ( Turner and Laird, 2012 ). The in-
ividual functional profile corresponding to each ROI was determined
y using the forward inference approach —providing information about
he probability of identifying activity in a brain region given previous
nowledge of a psychological process. Specifically, forward inference
ested whether the conditional probability of activation given a particu-
ar behavioral domain i.e. P(Activation|Behavioral domain) was higher
han the baseline probability i.e. P(Activation). Significance was deter-
ined by a binomial test with a standard 𝛼 = 0.05, corrected for multiple

omparisons using the false discovery rate (FDR) method. 

.4. Anatomical labeling and data visualization 

The SPM Anatomy toolbox ( www.fz-juelich.de/ime/
pm_anatomy_toolbox, v.2.2b, Eickhoff et al. 2007 ) and MRI-
ron ( http://people.cas.sc.edu/rorden/mricron/install.html/ )
ere used for anatomical labeling. MRIcroGL
 https://www.mccauslandcenter.sc.edu/mricrogl/home/ ) was used
or brain visualizations. 

. Result 

Results for the meta-analyze are reported separately for the social
ierarchy-related learning and interaction phase. 

.1. Results for SH-RL phase 

.1.1. Results for ALE analysis 

The ALE analysis for SH-RL revealed significant convergence of
ctivation in the following regions: mPFC, L amygdala/hippocampus,
 amygdala/hippocampus, LIPS, RIPS, LAI, RAI, and RTPJ ( Fig. 2 a,
able 2 ). 

.1.2. Results for consensus connectivity maps 

Results from MACM and RSFC analyses and their conjunctions for
ach ROI are displayed in Fig. S1. For mPFC, the connectivity results
ere consistent with the activation patterns of the default network.
ith regards to bilateral AI — the core region of the salience network
we found a clear similarity between its functional connectivity pat-

ern and that of the salience network. L amygdala/hippocampus and
 amygdala/hippocampus revealed similar functional connectivity pat-

erns with mPFC, posterior cingulate, bilateral inferior frontal gyrus,
triatum, bilateral fusiform gyrus. LIPS and RIPS both showed a pattern
f connectivity with bilateral middle frontal gyrus, bilateral dorsal an-
erior cingulate cortex, bilateral middle occipital gyrus, bilateral middle
emporal gyrus, bilateral inferior temporal gyrus. For RTPJ, it showed
 pattern of connectivity with bilateral middle frontal gyrus, bilateral
iddle temporal gyrus, and middle cingulate cortex. 

Next, regions supporting SH-RL were identified that were robustly
onnected with multiple seed regions: bilateral AI, bilateral anterior cin-
ulate cortex (ACC), bilateral dorsolateral prefrontal cortex (DLPFC),
7 
osterior parietal cortex (PCC), bilateral middle frontal gyrus, and bi-
ateral fusiform gyrus (FG) ( Fig. 3 ). 

.1.3. Results for FD analysis 

Functional decoding analyses were performed to gain insights about
he psychological functions of the identified regions ( Fig. 4 a). With
he hypothesis of the main cognitive function involved in SH-RL, how
losely related the three main functions (detection, updating and com-
utation, and construction and representation) and brain regions were
rought into focus. Results revealed that LAI, RAI, and RTPJ had a close
ink with observation in the action domain as well as vision and audition
n the perception domain, the behavioral domains that related to detec-
ion. The mPFC was functionally associated with processes of high-order
ognition including social cognition and reasoning in the cognition do-
ain, which was in accord with the assumption that mPFC supports

ocial hierarchical information updating and computation in SH-RL. L
mygdala/hippocampus, LIPS, RIPS had close associations with the vi-
uospatial cognition, i.e., spatial in the cognition domain, which had
 close link to the mental operation of integrating scattered social hi-
rarchy knowledge to the social hierarchy structure in one’s mind. All
esults that survived after correction (FDR < 0.05) are reported in Fig.
2. 

.2. Results for social hierarchy-related interaction phase 

.2.1. Results for ALE analysis 

For the ALE analysis, significant convergence of activation was ob-
erved in L amygdala/hippocampus, R amygdala/hippocampus, LGF,
nd striatum ( Fig. 2 b, Table 2 ). 

.2.2. Results for consensus connectivity maps 

Results of MACM and RSFC and their conjunctions for each ROI can
e found in Fig. 4 . Striatum produced functional connectivity patterns
ith the thalamus, midbrain, bilateral inferior frontal gyrus, bilateral
edial frontal gyrus, and middle cingulate cortex. For LFG, it is found

hat the patterns of connectivity with bilateral inferior occipital gyrus
nd bilateral superior parietal lobule. Bilateral amygdala/hippocampus
lusters revealed functional connectivity with mPFC, posterior cingu-
ate, bilateral inferior frontal gyrus, striatum, and bilateral fusiform
yrus. 

Next, the brain network supported SH-RI was identified by searching
rain regions that were robustly connected with multiple seed regions.
t is found that many brain regions of overlapped consensus connectiv-
ty map located in the reward circuit, including the striatum, medial
rbitofrontal cortex (mOPC) which implied the close link between SH-
I and reward circuit. Results of overlapping two and three consensus
onnectivity maps were illustrated in Fig. 5 . No brain regions survived
fter the number of consensus connectivity maps overlapped increase to
our. 

.2.3. Results for FD analysis 

To explore the underlying psychological function of meta-analytic
rain regions engaged in SH-RI, the likelihood ratios of some main be-
avioral domains in each ROI were determined ( Fig. 4 b). In a broad
ense, many psychological functions, such as action, cognition, and emo-
ion can be influenced by social hierarchy. To characterize the functional
rofile of the meta-analytic clusters in SH-RI, some basic domains re-
eived attention including execution and preparation in the action do-
ain, attention and social cognition in the cognition domain, and pos-

tive, negative, reward/gain, and punishment/loss in the emotion do-
ain. High likelihood ratios of some psychological domains in multiple
OIs illustrate the importance and consistency of their roles in SH-RI.
esults showed that among these basic psychological domains, striatum
nd bilateral amygdala/hippocampus clusters were closely related to the
omains of reward/gain as well as punishment/loss which implied the
lose links between reward-related psychological functions with SH-RI.

http://brainmap.org/scribe/
http://www.fz-juelich.de/ime/
http://people.cas.sc.edu/rorden/mricron/install.html/
https://www.mccauslandcenter.sc.edu/mricrogl/home/
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Fig. 2. Social hierarchy-related brain regions. 

ALE meta-analysis results showing brain regions consistently engaged for (A) social hierarchy-related learning and (B) social hierarchy-related interaction. Results 

were cluster-level familywise-error corrected for multiple comparisons (cFWE < 0.05 with a cluster defining threshold of p < 0.001 and 10,000 permutations). L, 

left; R, right; mPFC, medial prefrontal cortex; AI, anterior insula; IPS, intraparietal sulcus; TPJ, temporo-parietal junction; LFG, left fusiform gyrus. 

Table 2 

ALE meta-analysis results for social hierarchy-related learning and interaction. 

Brain Region Anatomical location BA MNI Coordinates Z score ∗ Cluster Size 

Labels x y z (mm 

3 ) 

Social hierarchy-related learning 

L Amygdala/ Hippocampus Amygdala/ Hippocampus 34/28 − 24 − 12 − 20 4.90 2152 

R Amygdala/ Hippocampus Amygdala/ Hippocampus 34/28 24 − 10 − 26 4.46 1944 

mPFC Medial frontal gyrus 32/10 − 10 52 − 10 5.85 1400 

LAI Insula 13 − 34 20 − 2 5.76 1392 

RAI Insula 13 34 22 − 6 4.86 888 

LIPS Superior parietal lobule 7 − 30 − 58 52 4.07 1024 

RIPS Superior parietal lobule 7 32 − 62 42 4.76 872 

RTPJ Superior temporal gyrus 39 48 − 50 10 4.40 832 

Social hierarchy-related interaction 

L Amygdala/ Hippocampus Amygdala/ Hippocampus 28/34 − 28 − 8 − 20 4.97 1632 

R Amygdala/ Hippocampus Amygdala/ Hippocampus / − 26 − 20 − 14 4.97 1032 

LFG Fusiform gyrus 37/19 − 32 − 66 − 14 4.08 952 

Striatum Caudate/Putamen / 10 8 − 4 5.11 792 

Contrast: SH-RL > SH-RI 

LIPS Superior parietal lobule 7 − 20 − 63 45 2.64 960 

LAI Insula 13 − 28 22 0 2.71 840 

RAI Insula / 28 24 − 6 2.10 352 

mPFC Medial frontal gyrus 32/10 − 10 48 − 14 2.42 592 

L Hippocampus Hippocampus 28/34/35 − 20 − 18 − 20 2.41 424 

L Amygdala Amygdala 34/28 − 14 − 2 − 22 2.35 336 

R Amygdala Amygdala 34 18 4 − 16 2.10 232 

RTPJ Superior temporal gyrus 22 52 − 46 10 2.00 288 

Contrast: SH-RI > SH-RL 

R Amygdala/ Hippocampus Amygdala/ Hippocampus 28 30 − 14 − 12 2.39 840 

Striatum Caudate/Putamen / 6 6 − 2 2.18 704 

LFG Fusiform gyrus 19 − 28 − 64 − 18 2.45 312 

Conjunction ALE ( × 10 − 2 ) 

L Amygdala/ Hippocampus Amygdala/ Hippocampus / − 24 − 8 − 20 1.86 288 

R Amygdala/ Hippocampus Amygdala/ Hippocampus 34/28 22 − 4 − 20 1.65 176 

ALE, activation likelihood estimation; MNI, Montreal Neurological Institute; L, left; R, right; mPFC, medial prefrontal 

cortex; LAI, left anterior insula; RAI, right anterior insula; L Amygdala/ Hippocampus, left Amygdala/ Hippocampus 

cluster; R Amygdala/ Hippocampus, left Amygdala/ Hippocampus cluster; LIPS, left intraparietal sulcus; RIPS, right in- 

traparietal sulcus; LFG, Fusiform Gyrus; RTPJ, right temporo-parietal junction; SH-RL, social hierarchy-related learning; 

SH-RI, social hierarchy-related interaction. ∗ Cluster-level family-wise error (FWE) correction ( p < 0.05) with cluster- 

forming threshold of p < 0.001 using 10,000 permutations. 

8 
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Fig. 3. Consensus connectivity maps of social hierarchy- 

related learning. 

Consensus connectivity maps identified by overlapping 

task-free (RSFC) and task-based (MACM) connectivity 

maps in the process of social hierarchy-related learning. 
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ll results that survived after correction (FDR < 0.05) are reported in
ig.S1. 

.3. Results for contrast and conjunction analyses 

For the contrast analyses, LIPS, bilateral AI, mPFC, left amyg-
ale/hippocampus clusters and RTPJ were more consistently activated
n SH-RL compared to SH-RI, whereas striatum, LFG, and right hip-
ocampus were more consistently activated in SH-RI compared to SH-RL
 Fig. 6 a, Table 1 ). The conjunction analysis showed a common activa-
ion maximum in the bilateral amygdala/hippocampus clusters ( Fig. 6 b,
able 2 ). 

. Discussion 

The role of social hierarchy cannot be overstated in its importance.
n addition to acting as a guide to social interactions and improving
he survival prospects of individuals within it, social hierarchy also con-
ributes greatly to stability and harmony within societies. Given the sig-
ificance of social hierarchy, there is much to be gained by endeavoring
o understand more about how humans create and work within them.
he pace of this quest has increased since the advancement of func-
ional neuroimaging techniques and has allowed us to develop insights
nto the neural underpinnings of how humans understand and interact
ith social hierarchies. However, the wide variety of experimental tasks

hat have been employed by these studies means that results are some-
hat heterogeneous. As a consequence, in the absence of any systematic

ramework of analysis, it is not possible to identify the core neural mech-
nisms which remain significant even if specific experimental situations
hange. 
9 
To synthesize previous findings, we divided paradigms into two
istinct domains: those that examine the process of SH-RL (i.e. social
ierarchy-related learning) and those that examine the process of SH-
I (i.e. social hierarchy-related interaction). Further, we used quantita-

ive meta-analyses to reveal the neural mechanisms that support these
wo processes. Using the ALE method, we identified brain regions that
ere consistently engaged by these cognitive processes and examined

heir underlying functional connectivity networks as generated by task-
ased co-activation (i.e., MACM) and task-free connectivity analyses
i.e., RSFC). Then we conducted functional decoding analyses which
rovided us with a sound basis for speculation regarding the functional
oles of these regions. 

In general, we made the following observations. For SH-RL we found
hat AI and TPJ were associated with the detection of dominance cues
nd that the mPFC plays an important role in updating and comput-
ng dynamic social hierarchy information. These regions may be used to
onstruct a social hierarchy structure with the support of IPS, amygdala,
nd hippocampus. With regards to SH-RI, we found that the modulation
f the social hierarchy may have strong associations with the reward net-
ork. Supports in regulating behaviors could be traced to the striatum,
mygdala, and hippocampus. With the framework of analysis described,
e will discuss the results within the context of the two above processes
nd their relationship based on conjunction and contrast analyses. 

.1. SH-RL phase 

We found that the process of SH-RL elicited consistent activation
atterns in the following brain regions: mPFC, RTPJ, and amygdala,
ippocampus, IPS, and AI. Based on the results of MACM, RSFC, and
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Fig. 4. Functional decoding (FD) analyses to characterize the functional roles of meta-analytic clusters consistently involved in the processing of social hierarchy- 

related learning (SH-RL) and social hierarchy-related interaction (SH-RI). 

(A) For SH-RL, the value of likelihood ratios in FD depicted the weight of each brain region on three main functions involved in SH-RL: detection (perception.vision; 

action.observation; perception.audition), updating, and computation (cognition. social cognition; cognition. reasoning), construction and representation (cognition. 

spatial). (B) For SH-RI, the value of likelihood ratios in FD depicted the weight of each brain region on some basic behavioral domains involved in SH-RI, i.e. action 

(execution; preparation), cognition (attention; social cognition), and emotion (positive; negative; positive. reward/gain; negative. punishment/ loss). L Amygdala/ 

Hippocampus, left amygdala/hippocampus cluster; R Amygdala/Hippocampus, right amygdala/hippocampus cluster; mPFC, medial prefrontal cortex; LAI, left an- 

terior insula; RAI, right anterior insula; LIPS, left intraparietal sulcus region; RIPS right intraparietal sulcus region; RTPJ, right temporo-parietal junction; LFG, left 

fusiform gyrus. 

10 
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Fig. 5. Consensus connectivity maps of social hierarchy- 

related interaction. 

Consensus connectivity maps identified by overlapping task- 

free (RSFC) and task-based (MACM) connectivity in the pro- 

cess of social hierarchy-related interaction. 

Fig. 6. Significant clusters from conjunction and contrast analyses. 

Results of contrast analysis (A) and conjunction analysis (B). Brain regions showing higher consistent activation in the social hierarchy-related learning are illustrated 

in red, whereas regions showing higher consistent activation in the social hierarchy-related interaction are illustrated in green. L, left; R, right; mPFC, medial prefrontal 

cortex; AI, anterior insula; IPS, intraparietal sulcus; TPJ, temporo-parietal junction; LFG, left fusiform gyrus (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.). 
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D, we will discuss how these brain regions relate to SH-RL within the
ontext of three main functions: detection, updating and computation,
nd construction and representation. 

.1.1. Detection 

The ability to detect valid cues carrying social hierarchy informa-
ion represents an important starting point to the process of obtaining
nowledge about social hierarchy. Extrapolating from our findings, we
rgue that bilateral AI may serve this role for the two following rea-
ons. Based on our task-based co-activation and task-free connectiv-
ty analyses, we found that the pattern of its functional connectivity
as consistent with that of the salience network. This finding under-

ined the important link between AI and this network. From a constant
tream of incoming sensory inputs, the salience detection mechanism
11 
n this network dynamically selects specific stimuli for additional pro-
essing ( Menon, 2015 ). As a prominent node of the salience network,
 main function of AI in the salience network is the detection of rel-
vant stimuli ( Crottaz-Herbette and Menon, 2006 ; Seeley et al., 2007 ;
terzer and Kleinschmidt, 2010 ). Researchers have found that AI con-
ributes to detection in many tasks examining numerous cognitive do-
ains ( Swick et al., 2011 ; Menon, 2015 ). Facial features are the most

ikely candidate to act as valid stimuli for providing information about
ne’s social status. One study used a forced-choice task based on human
aces to reveal brain regions engaged in social hierarchy comparison.
fter controlling for confounding factors, including the age of targets,
ender, and fame, activation of AI (Brodmann 47) remained significant
or social hierarchy discrimination ( Farrow et al., 2011 ). Based on such
vidence combined with our current findings, we confirmed that the
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etection function of AI acts on a wide spectrum of mental processes
ncluding the acquisition of social hierarchy knowledge. 

In the process of obtaining social hierarchy knowledge, the role of
PJ seems related to the detection of social dominance cues. Functional
rofiling of TPJ revealed its role involved in observation and perception.
his result is consistent with previous research. Meta-analysis studies
ound that TPJ has an influential role in the detection of extraneous stim-
li and reorienting of attention ( Decety and Lamm, 2007 ; Krall et al.,
015 ). Therefore, we suggest that TPJ serves to detect relevant infor-
ation about social hierarchy when individuals attempt to clarify hier-

rchical relationships. 

.1.2. Updating and computation 

Obtaining social hierarchy knowledge through dominance cues rep-
esents only one component of what is required to navigate the human
ocial landscape. Sometimes these clues are fuzzy or even contrived
 Kumaran et al., 2012 ). It seems that almost all creatures, whether hu-
an or animal, are born knowing how to camouflage themselves behind

xternal characteristics. Thus, a more refined process is necessary to
uild a more precise model of social hierarchy structures. Competition
nd observational learning are ways in which more precise information
bout the positions of others within social hierarchies can be obtained.
uccessful learning supported by these two modes requires outcome to
e tracked and knowledge of one’s social rank to be updated. The core
actor underlying this ability is that of internal updating and computa-
ion. Our functional connectivity and functional decoding analyses gave
s a clear indicator of the importance of mPFC in this role. Function pro-
les revealed its role associated with computation and updating, such as
ocial cognition and reasoning. Thus, we argue that the ability to com-
ute and update information about social hierarchies can be attributed
o mPFC. 

In many studies, mPFC is credited with internal computation. A
odel-based fMRI study found that mPFC tracked and updated the rank

f opponents ( Ligneul et al., 2016 ). Moreover, mPFC is the only brain
egion that has been found to encode prediction errors, a cognitive
omponent that promotes information updating, implying mPFC con-
ribution to updating variations between predictive outcome and real-
ty ( Ligneul et al., 2016 ). Although a different task and model frame-
ork was used, another study supports this function in mPFC. Based on
ayesian approaches, when participants compared the ranks of strangers
hrough observation and inference, mPFC was engaged in computing es-
imates of their power and updating information about one’s own rank
ithin the hierarchy ( Kumaran et al., 2016 ). 

The internal updating and computation function of mPFC is not re-
tricted to the domain of social hierarchy. It has been found to make
imilar contributions across numerous studies examing social domains
ncluding those examining social norms ( Xiang et al., 2013 ), learning
bout ownership ( Lockwood et al., 2018 ), tracking of expertise or abil-
ty ( Boorman et al., 2013 ; Wittmann et al., 2016 ), and mentalizing
 Hampton et al., 2008 ). In general, based on neural computations, many
tudies have found that internal computing signals are correlated with
ctivation in mPFC, highlighting its function in information updating
nd computation. 

.1.3. Construction and representation 

The ultimate purpose of the process of SH-RL is to accurately con-
truct or represent social hierarchical relationships in one’s own mind.
rain regions involved in this function are thought to reflect the degree
f social hierarchy by activation level characteristics. That is, social hier-
rchical stimuli should induce regular activation in these brain regions
s opposed to an irregular signal. This regularity should be correlated
ith the rank within the social hierarchy of an object. Based on our

esults and previous findings, this process may recruit several brain re-
ions including the hippocampus, IPS, and amygdala. 

Combined with previous findings and our functional decoding anal-
sis, it is found that the role of IPS and the hippocampus have a close
12 
ink with visuospatial cognition. In addition to physical space, these two
reas are also sensitive to the encoding of social space ( Parkinson et al.,
014 ; Montagrin et al., 2017 ). Moreover, previous studies have found
hat their cortical activity is a function of rank within the social hi-
rarchy ( Chiao et al., 2009 ; Kumaran et al., 2012 ; Kumaran, 2016 ;
aaker et al., 2016 ). 

The hippocampus represents a kind of neural navigation system
hich helps us to map not just spatial dimensions but also abstract con-

epts and social relationships ( Tavares et al., 2015 ; Constantinescu et al.,
016 ; Schafer and Schiller, 2018 ;). To investigate how the brain re-
ponds to ongoing changes in social relationships such as modulations
cross affiliation and dominance dimensions, one fMRI study recorded
eural activity while participants interacted with other roles. They
ound that perception of social navigation was closely related to the
ippocampus ( Tavares et al., 2015 ). This finding of the hippocam-
us provided a possible explanation for questions about why the hip-
ocampus working prominently in some studies about social hierarchy
 Kumaran et al., 2012 ; Zink et al., 2008 ). Social hierarchy learning is
rocessing like building social relationship structure in mind constantly
here may the role of hippocampus comes into play. This is one pos-

ible reason for the phenomenon that the hippocampus parametrically
racked the degree of the rank of target stimuli. 

IPS also appears to play a significant role in the construction
nd representation of relationships within the social hierarchy. It has
een found that activation levels in IPS correlate with the social sta-
us of targets when performing a self-referential status judgment task
 Cloutier and Gyurovski, 2013 ). Moreover, literature exploring how IPS
ncodes social space has provided clues as to how it may construct
odels of social structure. One study used multivoxel pattern analy-

is to reveal the neural mechanism underlying how distance is pro-
essed across spatial, temporal, and social domains. This study found
hat IPS was engaged across all distance domains at an above-chance
evel ( Parkinson et al., 2014 ). This finding illustrated the functional in-
egration capability of IPS in processing features of dimension across
oth physical and social space. Social hierarchy is, conceptually, a kind
f ordering or ranking based on one social dimension or combined social
alues. In this way, the IPS may play a role in processing information
o determine superiority/inferiority of rank, a process that requires the
omputation of magnitude judgments or encoding of relationships in
ocial space. 

Amygdala has also been found to be associated with the represen-
ation of the social hierarchy. Activation in the amygdala appears to
cale linearly with the rank within a social hierarchy ( Kumaran et al.,
016 ; Haaker et al., 2016 ). For example, in one study, participants were
equired to learn the rank of others through observation of confronta-
ion. This study revealed that the gradual acquisition of social hierar-
hy knowledge was negatively associated with amygdala responsivity.
hat is, increasing rank discrimination predicted decreasing levels of
ctivation in the amygdala ( Haaker et al., 2016 ). In contrast to the rep-
esentation of hierarchical relationships by IPS and hippocampus, the
mygdala only showed sensitivity to social space and not to physical
pace ( Kumaran et al., 2012 ; Kumaran, 2016 ). The representation of so-
ial hierarchy in amygdala may stem from the sensitivity to different
evels of emotion and motivation which is related to social rank. For
xample, research on non-human primates showed that surgical lesions
n amygdalae resulted in diminished social status and increased sub-
issiveness ( Rosvold et al., 1954 ). The role of amygdala in motivation

nd emotion may not only support learning about social hierarchy but
ay also offer to play a role in maintaining status ( Rosvold et al., 1954 ;
umaran et al., 2012 ; Watanabe and Yamamoto, 2015 ). 

.2. SH-RI phase 

Cognitive processes related to social hierarchy involve obtaining in-
ormation and subsequently this information guiding or impacting be-
aviors and social interactions. On the basis of acquired knowledge
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bout social hierarchy, behaviors can be modified in ways consciously
nd unconsciously. Our findings revealed roles for striatum, amygdala,
ippocampus, and LFG in this process of social hierarchy-related inter-
ction. 

.2.1. Overlap with the reward circuit 

According to our functional connectivity results, we found many
rain regions of overlapped consensus connectivity maps located in
he reward circuit. Moreover, for three main regions, bilateral amyg-
ala/hippocampus cluster and striatum, functional decoding indicated
n association of their function with reward and punishment. These find-
ngs suggest that modulation of SH-RI may not be independent of reward
rocessing. Furthermore, these results could not be explained by the
resence of financial incentives that were offered by experimenters to in-
rease engagement in participants. Experimental tasks in most previous
tudies were not directly relevant to monetary reward ( Freeman et al.,
009 ; Haaker et al., 2016 ; Feng et al., 2016 ). Thus, the inducing factor of
eward processing should be hidden in social hierarchical information
tself. Exploring the effects of social hierarchy on behavior and social
nteraction from a reward processing perspective would be helpful in
urthering our understanding. 

Previous studies demonstrated that the striatum is one of the key
tructures in the reward network and that amygdala, hippocampus are
ey components in regulating this network ( Haber and Knutson, 2009 ).
he significant role of the striatum in rewarding processing cannot be

solated from the synergy of other structures. The convergent fibers
rom the cortex within the striatum along with hippocampal, amygdalo-
triatal, and other projections make striatum a key entry port for pro-
essing emotional and motivational signals and thus driving action out-
ut in the basal ganglia ( Russchen et al., 1985 ; Fudge and Haber, 2001 ;
riedman et al., 2002 ; McFarland and Haber, 2002 Haber and Knut-
on, 2009 ). A variety of aspects of reward processing can be mediated
y this complex neural network formed by connectivity between these
rain regions. 

Striatum, which can represent primary reinforcers is also sensitive
o higher-order rewards including social comparisons, social hierarchy,
nd reputation ( Kedia et al., 2014 ; Christopoulos et al., 2017 ). For exam-
le, when participants viewed players who ranked by stars, their stria-
um responded to the higher one with a greater degree of activation
ompared with the lower one ( Zink et al., 2008 ). This can help indi-
iduals to interact with others from different ranks in an appropriate
ay. 

The functions of brain regions can sometimes be express through
heir interaction. The role of amygdala in regulating reward process-
ng has been demonstrated in numerous studies, in part through ob-
ervations of critical interactions between it and striatum in forming
timulus-reward associations ( Baxter and Murray, 2002 ). Hippocampal
nput to the shell of the nucleus accumbens is important for driving nu-
leus accumbens activity. Moreover, activity-dependent modulation of
he strength of this input may be involved in the regulation of goal-
irected behaviors ( Legates et al., 2018 ). Communication among these
rain regions mentioned above in both function and structure plays an
ntegral role in reward processing and may explain a variety of phenom-
na. 

.2.2. Impacts of social hierarchy guided by social reward 

As a basic principle of behavior, rewards are crucial for many activ-
ties including incentive learning, comparing social information, form-
ng appropriate responses to stimuli, and developing goal-directed be-
aviors ( Haber and Knutson, 2009 ; Kedia et al., 2014 ; Fareri and Del-
ado, 2014 ). Although the effect of social hierarchy is numerous and
omplicated, with the principle of reward guiding, we can summarize
he intricate situations as follows: those of superior rank attract more
ognitive resources and gain more positive feedbacks compared with
hose of a relatively inferior rank ( Dalmaso et al., 2011 ; Khalvati et al.,
13 
016 ). For example, interviewers can obtain information about the so-
ial class of candidates and make inferences about the fit, competence,
tarting salary, and signing bonus in ways that bias the process in favor
f applicants of higher social class ( Kraus et al., 2019 ). In a competi-
ion task, participants strategically adjusted themselves by improving
heir performance when facing strong opponents ( Ligneul et al., 2016 ).
any studies have observed parallel effects in the neural system. By us-

ng a competitive reaction time task within the context of both stable
nd unstable social hierarchy structures, many brain regions such as the
triatum, occipital gyrus, parahippocampal gyres showed stronger acti-
ation when faced with opponents of a high rank ( Zink et al., 2008 ). It
s reasonable to assume that, compared with those of an inferior rank,
ndividuals of superior rank have a greater social influence. Such supe-
iority often implies a higher threat in competition or higher benefit in
ooperation, thus mobilizing more cognitive resources to interact with
hem carefully is adaptable. 

With evidence from another direction, we become more convinced
hat rewarding guide the influence of social hierarchy on behaviors and
nteractions: if the reward behind the social rank change, the effect of
ocial rank change accordingly. Western culture tends to reinforce dom-
nant behaviors, whereas Eastern culture tends to reinforce subordinate
ehavior ( Freeman et al., 2009 ). This well-established cross-cultural
ifference in behavior has been verified by self-reports of participants
 Freeman et al., 2009 ). The different reward signal underlying this char-
cteristic behavior of social hierarchy between cultures was expressed
n a neural level by the mesolimbic reward system ( Freeman et al.,
009 ). In participants from the USA, dominant stimuli selectively en-
aged the caudate nucleus and mPFC, whereas these same regions were
electively engaged by subordinate stimuli in participants from Japan
 Freeman et al., 2009 ). In a social status task, the results didn’t show
 significant status-relative value assignment in the striatum but reflect
n interaction between agent’s status and subject’s own status: subjects
ith high social status had a higher degree of activation for high-status
gents which is opposite to low-status subjects, they have a higher acti-
ation to low-status agents in striatum ( Ly et al., 2011 ). In other words,
ubjects showed an equal rank preference. In nonhuman primates, one
tudy also found a similar pattern of preference for equal rank. Specifi-
ally, high-status monkeys preferentially attended to others with high-
tatus, whereas low-status monkeys attend to other low-status monkeys
 Shepherd et al., 2006 ). Such an equal rank preference can be inter-
reted by the in-group effect. Similar ones can provide lessons and ref-
rence for one’s own behavior which increases the value of equal rank
nes. In this way, although this social class preference is not fixed, the
eward signal underlying social status is always a key motivation in so-
ial hierarchy interaction. These close correlations between social hier-
rchy and reward processing allow us to understand the process of social
ierarchy-related interaction from a more general perspective. That is
he link between social hierarchy stimuli — reward implied in the social
ierarchy information — valuation response. 

.3. Information transfer and sharing: from SH-RL to SH-RI 

Although we view SH-RL and SH-RI as two independent processes
n analyses to obtain clearer results, these two psychological processes
re clearly complementary ( Qu et al., 2017 ). In daily life, these two pro-
esses may be evoked in a cyclical manner. Knowledge of the social hier-
rchy would allow an appropriate adjustment of behaviors for the subse-
uent interaction phase. This adjustment can then be enhanced by the
eedbacks of the environment or others post-interaction which can be
sed to update information regarding the other individual ( Santamaria-
arcia et al., 2014 ; Wittmann et al., 2016 ). Or even learn others’ social
ierarchy via interaction somehow, and interaction process includes an
pdating of social hierarchy. In this way, these two processes are not
arallel but rather connected and interactive. This connection implied a
equirement of a bridge for communication between these two processes
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hat can transfer information about social hierarchy from the SH-RL to
H-RI. 

We found two regions, the amygdala, and hippocampus may con-
ribute to this role. First, if some brain regions are involved in both pro-
esses, the possibility that they contribute to the join points would be
igher than other brain areas. This assumption is fully backed by the re-
ults of conjunction analysis, suggesting amygdala and hippocampus are
verlappings between SH-RL and SH-RI. Second, in the successive cog-
itive process of SH-RL, the action scope of the join points is more likely
o be located at the end of this overall cognitive stream. In other words,
n terms of cognitive functions involved in SH-RL, it is more reasonable
hat brain regions engaged in the construction and representation of in-
ormation are more likely involved in the transfer of this information
o SH-RI, rather than engaged in the initial detection or computation
tages. The third reason relates to what we previously discussed about
he notion that the influence asymmetry of social hierarchy is gener-
ted by differences in social value as a function of social rank. There-
ore, brain regions involved in connecting both processes should also
e implicated in processing reward. This function can be used to carry
nformation about social hierarchy to regulate rewarding processing. In
his view, it is persuasive that the amygdala and hippocampus serve as
oin points between SH-RL and SH-RI. Besides this finding in data anal-
ses, this viewpoint can be supported by experimental evidence from
revious studies. In an fMRI study, participants learned some persons’
nd galaxies’ ranks by observational learning, then they were required
o use their knowledge about the person and galaxy hierarchies to decide
ow much in real monetary terms to pay for potential projects on offer
n the later interaction phase ( Kumaran et al., 2012 ). Their fMRI results
ndicated that the activation of the hippocampus as a function of per-
on rank and galaxy rank ( Kumaran et al., 2012 ). As to the amygdala,
hey found a significant linear correlation between its neural activity
nd person rank, but not galaxy rank ( Kumaran et al., 2012 ). Another
tudy that investigated both the learning phase and the interaction phase
bserved domain-general coding of rank in the amygdala and hippocam-
us, even when the interaction task was just required to categorize other
ersons according to the company to which they belonged and not re-
uire the knowledge about their social hierarchy ( Kumaran et al., 2016 ).
hese experimental findings confirmed the role of the amygdala and hip-
ocampus in information transfer and sharing between SH-RL and SH-RI
rocesses. 

.4. Limitations 

The limitation related to the method should be discussed first. ALE
eta-analysis utilizes partial information of fMRI study, including the
eak coordinates of brain activation and the number of participants.
ome other factors such as cluster size, effect size, scanning parameters
re not taken into account which also have their impacts on results and
otential publication bias based on these factors can not be obtained.
hen, our study includes a couple of main limitations that should be
ddressed in future studies. First, we treated SH-RL and SH-RI as two
utually independent yet closely related cognitive processes in our cur-

ent analyses. However, in some situations such as when the social rank
f another individual can not be assessed accurately at a time, these
wo processes may invoke circularly and frequently. In this closed cog-
itive loop, the information transfer from SH-RL to SH-RI is important.
ased on our meta-analyses results, we proposed that the amygdala and
ippocampus may play a crucial role in transferring information from
H-RL to SH-RI. However, this deduction is derived from data-driven
nalyses but lacks direct experimental evidence and needs further in-
estigations in the future. 

Second, social hierarchy-related information exists in a dynamic so-
ial context, i.e., everyone can be a sender or a receiver of the so-
ial hierarchical signal. Thus, investigating interpersonal interactions
y adopting a hyper-scanning approach that records signals from two
r more participants simultaneously is a meaningful research direction
14 
 Pinti et al., 2020 ). Since this proposed paradigm needs further explo-
ation, our identified brain regions could be used as regions of inter-
st for future studies employing, for example, functional near-infrared
pectroscopy (fNIRS) based hyper-scanning studies. Despite these limi-
ations, we were able to gain valuable insight into the neural mechanism
f two key stages related to social hierarchy by combining a quantitative
eta-analytical method with a qualitative perspective. 

. Conclusion 

In daily life, SH-RL and SH-RI are both essential to the efficient nav-
gation of our social world. In this study, we applied multiple meta-
nalytical methods to reveal the relevant neural mechanisms of these
rocesses. For SH-RL, we identified that AI and TPJ are likely impli-
ated in detecting dominance cues that carry information about social
ierarchy; mPFC probably contributes to internal updating and com-
uting dynamic feedbacks; and that amygdala, hippocampus; and IPS
ossibly serve to construct and represent a model of social hierarchy
tructure. For SH-RI, we found that this process recruited the amygdala,
ippocampus, striatum, and fusiform gyrus. Evidence of activation pat-
ern and function decoding revealed close links between SH-RI and re-
ard processing, suggesting the possibility that guidance by the reward
rocessing network is the root mechanism underlying the modulation of
ehavior in relation to social hierarchy. These results provide insights
nto the neural signatures of social hierarchy-related learning and in-
eraction. Considering social hierarchy as a basic rule of society, these
ndings shed light on the understanding in interaction between social
rganization and social cognition as well as some application for social
daptation in a neuropsychological way. 
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