000902975 001__ 902975
000902975 005__ 20220103172034.0
000902975 0247_ $$2doi$$a10.1088/1361-6463/ac2067
000902975 0247_ $$2ISSN$$a0022-3727
000902975 0247_ $$2ISSN$$a0262-8171
000902975 0247_ $$2ISSN$$a0508-3443
000902975 0247_ $$2ISSN$$a1361-6463
000902975 0247_ $$2ISSN$$a2057-7656
000902975 0247_ $$2Handle$$a2128/29233
000902975 0247_ $$2altmetric$$aaltmetric:111909831
000902975 0247_ $$2WOS$$aWOS:000695432300001
000902975 037__ $$aFZJ-2021-04721
000902975 082__ $$a530
000902975 1001_ $$00000-0002-8221-5288$$aMartins, H. P.$$b0
000902975 245__ $$aNear total reflection x-ray photoelectron spectroscopy: quantifying chemistry at solid/liquid and solid/solid interfaces
000902975 260__ $$aBristol$$bIOP Publ.$$c2021
000902975 3367_ $$2DRIVER$$aarticle
000902975 3367_ $$2DataCite$$aOutput Types/Journal article
000902975 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1638280321_1981
000902975 3367_ $$2BibTeX$$aARTICLE
000902975 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902975 3367_ $$00$$2EndNote$$aJournal Article
000902975 520__ $$aNear total reflection regime has been widely used in x-ray science, specifically in grazing incidence small angle x-ray scattering and in hard x-ray photoelectron spectroscopy (XPS). In this work, we introduce some practical aspects of using near total reflection (NTR) in ambient pressure XPS and apply this technique to study chemical concentration gradients in a substrate/photoresist system. Experimental data are accompanied by x-ray optical and photoemission simulations to quantitatively probe the photoresist and the interface with the depth accuracy of ∼1 nm. Together, our calculations and experiments confirm that NTR XPS is a suitable method to extract information from buried interfaces with highest depth-resolution, which can help address open research questions regarding our understanding of concentration profiles, electrical gradients, and charge transfer phenomena at such interfaces. The presented methodology is especially attractive for solid/liquid interface studies, since it provides all the strengths of a Bragg-reflection standing-wave spectroscopy without the need of an artificial multilayer mirror serving as a standing wave generator, thus dramatically simplifying the sample synthesis.
000902975 536__ $$0G:(DE-HGF)POF4-1212$$a1212 - Materials and Interfaces (POF4-121)$$cPOF4-121$$fPOF IV$$x0
000902975 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902975 7001_ $$00000-0003-3174-2691$$aConti, G.$$b1
000902975 7001_ $$0P:(DE-HGF)0$$aCordova, I.$$b2
000902975 7001_ $$00000-0002-2622-5166$$aFalling, L.$$b3
000902975 7001_ $$00000-0002-6246-7680$$aKersell, H.$$b4
000902975 7001_ $$0P:(DE-HGF)0$$aSalmassi, F.$$b5
000902975 7001_ $$0P:(DE-HGF)0$$aGullikson, E.$$b6
000902975 7001_ $$00000-0002-8534-9329$$aVishik, I.$$b7
000902975 7001_ $$0P:(DE-Juel1)159254$$aBaeumer, C.$$b8
000902975 7001_ $$0P:(DE-HGF)0$$aNaulleau, P.$$b9
000902975 7001_ $$0P:(DE-Juel1)130948$$aSchneider, C. M.$$b10
000902975 7001_ $$0P:(DE-Juel1)164137$$aNemsak, S.$$b11$$eCorresponding author
000902975 773__ $$0PERI:(DE-600)1472948-9$$a10.1088/1361-6463/ac2067$$gVol. 54, no. 46, p. 464002 -$$n46$$p464002 -$$tJournal of physics / D$$v54$$x0022-3727$$y2021
000902975 8564_ $$uhttps://juser.fz-juelich.de/record/902975/files/Martins_2021_J._Phys._D%20_Appl._Phys._54_464002.pdf
000902975 8564_ $$uhttps://juser.fz-juelich.de/record/902975/files/2108.06413.pdf$$yOpenAccess
000902975 909CO $$ooai:juser.fz-juelich.de:902975$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000902975 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159254$$aForschungszentrum Jülich$$b8$$kFZJ
000902975 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130948$$aForschungszentrum Jülich$$b10$$kFZJ
000902975 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164137$$aForschungszentrum Jülich$$b11$$kFZJ
000902975 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1212$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
000902975 9141_ $$y2021
000902975 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-29
000902975 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-29
000902975 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-01-29
000902975 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-29
000902975 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-29
000902975 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000902975 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-29
000902975 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-29
000902975 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902975 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-29
000902975 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS D APPL PHYS : 2019$$d2021-01-29
000902975 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2021-01-29$$wger
000902975 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000902975 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-29$$wger
000902975 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-29
000902975 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x0
000902975 980__ $$ajournal
000902975 980__ $$aVDB
000902975 980__ $$aUNRESTRICTED
000902975 980__ $$aI:(DE-Juel1)PGI-6-20110106
000902975 9801_ $$aFullTexts