001     902975
005     20220103172034.0
024 7 _ |a 10.1088/1361-6463/ac2067
|2 doi
024 7 _ |a 0022-3727
|2 ISSN
024 7 _ |a 0262-8171
|2 ISSN
024 7 _ |a 0508-3443
|2 ISSN
024 7 _ |a 1361-6463
|2 ISSN
024 7 _ |a 2057-7656
|2 ISSN
024 7 _ |a 2128/29233
|2 Handle
024 7 _ |a altmetric:111909831
|2 altmetric
024 7 _ |a WOS:000695432300001
|2 WOS
037 _ _ |a FZJ-2021-04721
082 _ _ |a 530
100 1 _ |a Martins, H. P.
|0 0000-0002-8221-5288
|b 0
245 _ _ |a Near total reflection x-ray photoelectron spectroscopy: quantifying chemistry at solid/liquid and solid/solid interfaces
260 _ _ |a Bristol
|c 2021
|b IOP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1638280321_1981
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Near total reflection regime has been widely used in x-ray science, specifically in grazing incidence small angle x-ray scattering and in hard x-ray photoelectron spectroscopy (XPS). In this work, we introduce some practical aspects of using near total reflection (NTR) in ambient pressure XPS and apply this technique to study chemical concentration gradients in a substrate/photoresist system. Experimental data are accompanied by x-ray optical and photoemission simulations to quantitatively probe the photoresist and the interface with the depth accuracy of ∼1 nm. Together, our calculations and experiments confirm that NTR XPS is a suitable method to extract information from buried interfaces with highest depth-resolution, which can help address open research questions regarding our understanding of concentration profiles, electrical gradients, and charge transfer phenomena at such interfaces. The presented methodology is especially attractive for solid/liquid interface studies, since it provides all the strengths of a Bragg-reflection standing-wave spectroscopy without the need of an artificial multilayer mirror serving as a standing wave generator, thus dramatically simplifying the sample synthesis.
536 _ _ |a 1212 - Materials and Interfaces (POF4-121)
|0 G:(DE-HGF)POF4-1212
|c POF4-121
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Conti, G.
|0 0000-0003-3174-2691
|b 1
700 1 _ |a Cordova, I.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Falling, L.
|0 0000-0002-2622-5166
|b 3
700 1 _ |a Kersell, H.
|0 0000-0002-6246-7680
|b 4
700 1 _ |a Salmassi, F.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Gullikson, E.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Vishik, I.
|0 0000-0002-8534-9329
|b 7
700 1 _ |a Baeumer, C.
|0 P:(DE-Juel1)159254
|b 8
700 1 _ |a Naulleau, P.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Schneider, C. M.
|0 P:(DE-Juel1)130948
|b 10
700 1 _ |a Nemsak, S.
|0 P:(DE-Juel1)164137
|b 11
|e Corresponding author
773 _ _ |a 10.1088/1361-6463/ac2067
|g Vol. 54, no. 46, p. 464002 -
|0 PERI:(DE-600)1472948-9
|n 46
|p 464002 -
|t Journal of physics / D
|v 54
|y 2021
|x 0022-3727
856 4 _ |u https://juser.fz-juelich.de/record/902975/files/Martins_2021_J._Phys._D%20_Appl._Phys._54_464002.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/902975/files/2108.06413.pdf
909 C O |o oai:juser.fz-juelich.de:902975
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)159254
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)130948
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)164137
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1212
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-29
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PHYS D APPL PHYS : 2019
|d 2021-01-29
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2021-01-29
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-29
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-29
920 1 _ |0 I:(DE-Juel1)PGI-6-20110106
|k PGI-6
|l Elektronische Eigenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-6-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21