000902979 001__ 902979
000902979 005__ 20240712084531.0
000902979 0247_ $$2doi$$a10.1021/acsaelm.1c00787
000902979 0247_ $$2Handle$$a2128/29232
000902979 0247_ $$2WOS$$aWOS:000756989100034
000902979 037__ $$aFZJ-2021-04725
000902979 082__ $$a620
000902979 1001_ $$00000-0002-7572-499X$$aLin, Weyde M. M.$$b0
000902979 245__ $$aRecombination Dynamics in PbS Nanocrystal Quantum Dot Solar Cells Studied through Drift–Diffusion Simulations
000902979 260__ $$aWashington, DC$$bACS Publications$$c2021
000902979 3367_ $$2DRIVER$$aarticle
000902979 3367_ $$2DataCite$$aOutput Types/Journal article
000902979 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1638279945_1981
000902979 3367_ $$2BibTeX$$aARTICLE
000902979 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902979 3367_ $$00$$2EndNote$$aJournal Article
000902979 520__ $$aThe significant performance increase in nanocrystal (NC)-based solar cells over the last decade is very encouraging. However, many of these gains have been achieved by trial-and-error optimization, and a systematic understanding of what limits the device performance is lacking. In parallel, experimental and computational techniques provide increasing insights into the electronic properties of individual NCs and their assemblies in thin films. Here, we utilize these insights to parameterize drift–diffusion simulations of PbS NC solar cells, which enable us to track the distribution of charge carriers in the device and quantify recombination dynamics, which limit the device performance. We simulate both Schottky- and heterojunction-type devices and, through temperature-dependent measurements in the light and dark, experimentally validate the appropriateness of the parameterization. The results reveal that Schottky-type devices are limited by surface recombination between the PbS and aluminum contact, while heterojunction devices are currently limited by NC dopants and electronic defects in the PbS layer. The simulations highlight a number of opportunities for further performance enhancement, including the reduction of dopants in the nanocrystal active layer, the control over doping and electronic structure in electron- and hole-blocking layers (e.g., ZnO), and the optimization of the interfaces to improve the band alignment and reduce surface recombination. For example, reduction in the percentage of p-type NCs from the current 1–0.01% in the heterojunction device can lead to a 25% percent increase in the power conversion efficiency.
000902979 536__ $$0G:(DE-HGF)POF4-1215$$a1215 - Simulations, Theory, Optics, and Analytics (STOA) (POF4-121)$$cPOF4-121$$fPOF IV$$x0
000902979 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902979 7001_ $$00000-0001-6593-7601$$aYazdani, Nuri$$b1
000902979 7001_ $$0P:(DE-HGF)0$$aYarema, Olesya$$b2
000902979 7001_ $$00000-0002-2006-2466$$aYarema, Maksym$$b3
000902979 7001_ $$00000-0002-1676-705X$$aLiu, Mengxia$$b4
000902979 7001_ $$00000-0003-0396-6495$$aSargent, Edward H.$$b5
000902979 7001_ $$0P:(DE-Juel1)159457$$aKirchartz, Thomas$$b6
000902979 7001_ $$00000-0001-6435-0227$$aWood, Vanessa$$b7$$eCorresponding author
000902979 773__ $$0PERI:(DE-600)2949097-2$$a10.1021/acsaelm.1c00787$$gVol. 3, no. 11, p. 4977 - 4989$$n11$$p4977 - 4989$$tACS applied electronic materials$$v3$$x2637-6113$$y2021
000902979 8564_ $$uhttps://juser.fz-juelich.de/record/902979/files/acsaelm.1c00787.pdf$$yOpenAccess
000902979 909CO $$ooai:juser.fz-juelich.de:902979$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000902979 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159457$$aForschungszentrum Jülich$$b6$$kFZJ
000902979 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1215$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
000902979 9141_ $$y2021
000902979 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-09
000902979 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000902979 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2020-09-09
000902979 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902979 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-09
000902979 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-09
000902979 920__ $$lyes
000902979 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000902979 9801_ $$aFullTexts
000902979 980__ $$ajournal
000902979 980__ $$aVDB
000902979 980__ $$aUNRESTRICTED
000902979 980__ $$aI:(DE-Juel1)IEK-5-20101013
000902979 981__ $$aI:(DE-Juel1)IMD-3-20101013