001     902979
005     20240712084531.0
024 7 _ |a 10.1021/acsaelm.1c00787
|2 doi
024 7 _ |a 2128/29232
|2 Handle
024 7 _ |a WOS:000756989100034
|2 WOS
037 _ _ |a FZJ-2021-04725
082 _ _ |a 620
100 1 _ |a Lin, Weyde M. M.
|0 0000-0002-7572-499X
|b 0
245 _ _ |a Recombination Dynamics in PbS Nanocrystal Quantum Dot Solar Cells Studied through Drift–Diffusion Simulations
260 _ _ |a Washington, DC
|c 2021
|b ACS Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1638279945_1981
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The significant performance increase in nanocrystal (NC)-based solar cells over the last decade is very encouraging. However, many of these gains have been achieved by trial-and-error optimization, and a systematic understanding of what limits the device performance is lacking. In parallel, experimental and computational techniques provide increasing insights into the electronic properties of individual NCs and their assemblies in thin films. Here, we utilize these insights to parameterize drift–diffusion simulations of PbS NC solar cells, which enable us to track the distribution of charge carriers in the device and quantify recombination dynamics, which limit the device performance. We simulate both Schottky- and heterojunction-type devices and, through temperature-dependent measurements in the light and dark, experimentally validate the appropriateness of the parameterization. The results reveal that Schottky-type devices are limited by surface recombination between the PbS and aluminum contact, while heterojunction devices are currently limited by NC dopants and electronic defects in the PbS layer. The simulations highlight a number of opportunities for further performance enhancement, including the reduction of dopants in the nanocrystal active layer, the control over doping and electronic structure in electron- and hole-blocking layers (e.g., ZnO), and the optimization of the interfaces to improve the band alignment and reduce surface recombination. For example, reduction in the percentage of p-type NCs from the current 1–0.01% in the heterojunction device can lead to a 25% percent increase in the power conversion efficiency.
536 _ _ |a 1215 - Simulations, Theory, Optics, and Analytics (STOA) (POF4-121)
|0 G:(DE-HGF)POF4-1215
|c POF4-121
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Yazdani, Nuri
|0 0000-0001-6593-7601
|b 1
700 1 _ |a Yarema, Olesya
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Yarema, Maksym
|0 0000-0002-2006-2466
|b 3
700 1 _ |a Liu, Mengxia
|0 0000-0002-1676-705X
|b 4
700 1 _ |a Sargent, Edward H.
|0 0000-0003-0396-6495
|b 5
700 1 _ |a Kirchartz, Thomas
|0 P:(DE-Juel1)159457
|b 6
700 1 _ |a Wood, Vanessa
|0 0000-0001-6435-0227
|b 7
|e Corresponding author
773 _ _ |a 10.1021/acsaelm.1c00787
|g Vol. 3, no. 11, p. 4977 - 4989
|0 PERI:(DE-600)2949097-2
|n 11
|p 4977 - 4989
|t ACS applied electronic materials
|v 3
|y 2021
|x 2637-6113
856 4 _ |u https://juser.fz-juelich.de/record/902979/files/acsaelm.1c00787.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:902979
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)159457
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1215
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-09
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2020-09-09
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-09
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21