000902984 001__ 902984
000902984 005__ 20240712084531.0
000902984 0247_ $$2doi$$a10.1016/j.rinp.2021.104031
000902984 0247_ $$2datacite_doi$$a10.34734/FZJ-2021-04730
000902984 0247_ $$2WOS$$aWOS:000639878400004
000902984 037__ $$aFZJ-2021-04730
000902984 082__ $$a530
000902984 1001_ $$0P:(DE-HGF)0$$aMu, Rui$$b0$$eCorresponding author
000902984 245__ $$aA spectrum deconvolution method based on grey relational analysis
000902984 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2021
000902984 3367_ $$2DRIVER$$aarticle
000902984 3367_ $$2DataCite$$aOutput Types/Journal article
000902984 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1700553749_7924
000902984 3367_ $$2BibTeX$$aARTICLE
000902984 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902984 3367_ $$00$$2EndNote$$aJournal Article
000902984 520__ $$aThe extensive usage of X-ray spectroscopies in studying complex material systems is not only intended toreveal underlying mechanisms that govern physical phenomena, but also used in applied studies focused onan insight-driven performance improvement of a wide range of devices. However, the traditional analysismethods for X-ray spectroscopic data are rather time-consuming and sensitive to errors in data preprocessing(e.g., normalization or background subtraction). In this study, a method based on grey relationalanalysis, a multi-variable statistical method, is proposed to analyze and extract information from X-rayspectroscopic data. As a showcase, the valence bands of microcrystalline silicon suboxides probed by hardX-ray photoelectron spectroscopy (HAXPES) were investigated. The results obtained by the proposedmethod agree well with conventionally derived composition information (e.g., curve fit of Si 2p core levelof the silicon suboxides). Furthermore, the uncertainty of chemical compositions derived by the proposedmethod is smaller than that of traditional analysis methods (e.g., the least square fit), when artificial linearfunctions are introduced to simulate the errors in data pre-processing. This suggests that the proposedmethod is capable of providing more reliable and accurate results, especially for data containing significantnoise contributions or that is subject to inconsistent data pre-processing. Since the proposed method is lessexperience-driven and error-prone, it offers a novel approach for automate data analysis, which is of greatinterest for various applications, such as studying combinatorial material “libraries”.
000902984 536__ $$0G:(DE-HGF)POF4-1213$$a1213 - Cell Design and Development (POF4-121)$$cPOF4-121$$fPOF IV$$x0
000902984 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902984 7001_ $$0P:(DE-HGF)0$$aZheng, Yujie$$b1
000902984 7001_ $$0P:(DE-Juel1)130263$$aLambertz, Andreas$$b2
000902984 7001_ $$0P:(DE-HGF)0$$aWilks, Regan G.$$b3
000902984 7001_ $$0P:(DE-HGF)0$$aBär, Marcus$$b4
000902984 7001_ $$0P:(DE-HGF)0$$aZhang, Yufeng$$b5$$eCorresponding author
000902984 773__ $$0PERI:(DE-600)2631798-9$$a10.1016/j.rinp.2021.104031$$gVol. 23, p. 104031 -$$p104031$$tResults in Physics$$v23$$x2211-3797$$y2021
000902984 8564_ $$uhttps://juser.fz-juelich.de/record/902984/files/1-s2.0-S2211379721001984-main.pdf$$yOpenAccess
000902984 8564_ $$uhttps://juser.fz-juelich.de/record/902984/files/A%20spectrum%20deconvolution%20method%20based%20on%20grey%20relational%20analysis.pdf$$yOpenAccess
000902984 909CO $$ooai:juser.fz-juelich.de:902984$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000902984 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130263$$aForschungszentrum Jülich$$b2$$kFZJ
000902984 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1213$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
000902984 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-03
000902984 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000902984 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000902984 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bRESULTS PHYS : 2019$$d2021-02-03
000902984 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-03
000902984 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-03
000902984 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000902984 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-03
000902984 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-03
000902984 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-03
000902984 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902984 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-02-03
000902984 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-03
000902984 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-03
000902984 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-03
000902984 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-03
000902984 920__ $$lyes
000902984 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000902984 9801_ $$aFullTexts
000902984 980__ $$ajournal
000902984 980__ $$aVDB
000902984 980__ $$aUNRESTRICTED
000902984 980__ $$aI:(DE-Juel1)IEK-5-20101013
000902984 981__ $$aI:(DE-Juel1)IMD-3-20101013