001     902985
005     20240712084531.0
024 7 _ |a 10.1016/j.apsusc.2020.148749
|2 doi
024 7 _ |a 0169-4332
|2 ISSN
024 7 _ |a 1873-5584
|2 ISSN
024 7 _ |a 2128/33702
|2 Handle
024 7 _ |a WOS:000608516100006
|2 WOS
037 _ _ |a FZJ-2021-04731
082 _ _ |a 660
100 1 _ |a Wu, Zhuopeng
|0 P:(DE-Juel1)180286
|b 0
245 _ _ |a Low-resistivity p-type a-Si:H/AZO hole contact in high-efficiency silicon heterojunction solar cells
260 _ _ |a Amsterdam
|c 2021
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1674047505_28599
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Decreasing the contact resistance between hydrogenated amorphous silicon (a-Si:H) and transparent conductive oxide film (TCO) is beneficial for achieving high efficiency silicon heterojunction (SHJ) solar cells. This study reports the implementation of trimethyl boron B(CH3)3 (TMB) doped p-type a-Si:H (a-Si:H(p)) film as hole transport layer contacting with indium-free aluminum doped zinc oxide (AZO) in SHJ solar cells. The influence of doping concentration on the nanostructure of a-Si:H(p), TCO/a-Si:H(p) contact resistivity as well as the resultant cell performance was systematically investigated. It was found that excessive TMB doping results in more carbon and voids inside the films and reduces the doping efficiency, lowering the conductivity and increasing the contact resistivity. a-Si:H(p) film with low defect density and high doping level was obtained at a moderate doping concentration, which facilitates tunneling transport for holes to overcome the high energy barrier at the a-Si:H(p)/AZO interface and results in a low contact resistivity down to 0.14 Ωcm2. The optimized low-resistivity a-Si:H(p)/AZO contact enables a fill factor above 81% and efficiency of 23.6% for M2 SHJ solar cells, which is comparable with 23.7%-efficient cells using traditional tin doped indium oxide (ITO). To our knowledge, this is the highest efficiency for AZO-implemented SHJ cells without double anti-reflection layer and silver back reflector. This work provides design principles on how to achieve high-efficiency SHJ cells with low resistive loss at the hole contact side via doping engineering.
536 _ _ |a 1213 - Cell Design and Development (POF4-121)
|0 G:(DE-HGF)POF4-1213
|c POF4-121
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Duan, Weiyuan
|0 P:(DE-Juel1)169946
|b 1
|e Corresponding author
700 1 _ |a Lambertz, Andreas
|0 P:(DE-Juel1)130263
|b 2
700 1 _ |a Qiu, Depeng
|0 P:(DE-Juel1)173822
|b 3
700 1 _ |a Pomaska, Manuel
|0 P:(DE-Juel1)162141
|b 4
700 1 _ |a Yao, Zhirong
|0 P:(DE-Juel1)176774
|b 5
700 1 _ |a Rau, Uwe
|0 P:(DE-Juel1)130285
|b 6
|u fzj
700 1 _ |a Zhang, Liping
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Liu, Zhengxin
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Ding, Kaining
|0 P:(DE-Juel1)130233
|b 9
773 _ _ |a 10.1016/j.apsusc.2020.148749
|g Vol. 542, p. 148749 -
|0 PERI:(DE-600)2002520-8
|p 148749
|t Applied surface science
|v 542
|y 2021
|x 0169-4332
856 4 _ |u https://juser.fz-juelich.de/record/902985/files/Low-resistivity%20p-type%20a-SiHAZO%20Hole%20Contact%20in%20High-efficiency%20Silicon%20Heterojunction%20Solar%20Cells.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:902985
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)169946
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130263
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)173822
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)162141
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)130285
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)130233
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1213
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APPL SURF SCI : 2019
|d 2021-01-29
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b APPL SURF SCI : 2019
|d 2021-01-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-29
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-29
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-29
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21