000902989 001__ 902989
000902989 005__ 20240712084514.0
000902989 0247_ $$2doi$$a10.1021/acsaem.1c00654
000902989 0247_ $$2Handle$$a2128/30308
000902989 0247_ $$2WOS$$aWOS:000688250200015
000902989 037__ $$aFZJ-2021-04735
000902989 082__ $$a540
000902989 1001_ $$0P:(DE-Juel1)173822$$aQiu, Depeng$$b0
000902989 245__ $$aFunction Analysis of the Phosphine Gas Flow for n-Type Nanocrystalline Silicon Oxide Layer in Silicon Heterojunction Solar Cells
000902989 260__ $$aWashington, DC$$bACS Publications$$c2021
000902989 3367_ $$2DRIVER$$aarticle
000902989 3367_ $$2DataCite$$aOutput Types/Journal article
000902989 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1642431427_30509
000902989 3367_ $$2BibTeX$$aARTICLE
000902989 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902989 3367_ $$00$$2EndNote$$aJournal Article
000902989 520__ $$aThe energy conversion efficiency (η) of silicon heterojunction (SHJ) solar cells is limited by the current losses in the layer stack on the illuminated side. To reduce these losses, hydrogenated nanocrystalline silicon oxide (nc-SiOx:H) was implemented as a window layer in SHJ solar cells. However, the integration of nc-SiOx:H in devices without degradation of fill factor (FF) is still a challenge. To optimize the electron performance of devices, the optoelectronic properties and microstructure of nc-SiOx:H were characterized and analyzed systematically. It was found that the PH3 gas fraction (fPH3) plays a big role on the microstructure, oxygen content, and phosphorus (P) doping efficiency of the films. The highest conductivity, 2.84 × 10–1 S/cm, is obtained at a moderate fPH3 with an optical band gap of 2.26 eV. A ternary model was creatively used to show the variation in the composition of nc-SiOx:H as tuning fPH3. The growth of crystalline phase was accelerated by the P dopants when fPH3 is low, but further increasing fPH3 leads to excessive P inactive dopants, causing a phase transition from nanocrystalline silicon to amorphous silicon in nc-SiOx:H. In this work, the best solar cell with an nc-SiOx:H window layer achieves an FF of 81.4%, a short current density (Jsc) of 39.8 mA/cm2, an open-circuit voltage (Voc) of 731 mV, and an η of 23.7% at the moderate fPH3. A decrease in FF and Jsc is shown with higher fPH3, which is the consequence of the increased front contact resistivity and decreased optical band gap of nc-SiOx:H window layer.
000902989 536__ $$0G:(DE-HGF)POF4-1213$$a1213 - Cell Design and Development (POF4-121)$$cPOF4-121$$fPOF IV$$x0
000902989 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902989 7001_ $$0P:(DE-Juel1)169946$$aDuan, Weiyuan$$b1$$eCorresponding author
000902989 7001_ $$0P:(DE-Juel1)130263$$aLambertz, Andreas$$b2
000902989 7001_ $$0P:(DE-Juel1)180286$$aWu, Zhuopeng$$b3
000902989 7001_ $$0P:(DE-Juel1)130219$$aBittkau, Karsten$$b4
000902989 7001_ $$0P:(DE-Juel1)178049$$aQiu, Kaifu$$b5
000902989 7001_ $$0P:(DE-Juel1)176774$$aYao, Zhirong$$b6
000902989 7001_ $$0P:(DE-Juel1)143905$$aRau, Uwe$$b7
000902989 7001_ $$0P:(DE-Juel1)130233$$aDing, Kaining$$b8
000902989 773__ $$0PERI:(DE-600)2916551-9$$a10.1021/acsaem.1c00654$$gVol. 4, no. 8, p. 7544 - 7551$$n8$$p7544 - 7551$$tACS applied energy materials$$v4$$x2574-0962$$y2021
000902989 8564_ $$uhttps://juser.fz-juelich.de/record/902989/files/acsaem.1c00654.pdf$$yRestricted
000902989 8564_ $$uhttps://juser.fz-juelich.de/record/902989/files/Function%20analysis%20of%20the%20Phosphine%20Gas%20Flow%20for%20n-type%20Nanocrystalline%20Silicon%20Oxide%20Layer%20in%20Silicon%20Heterojunction%20Solar%20Cells%20%28003%29.pdf$$yPublished on 2021-08-04. Available in OpenAccess from 2022-08-04.
000902989 909CO $$ooai:juser.fz-juelich.de:902989$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000902989 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173822$$aForschungszentrum Jülich$$b0$$kFZJ
000902989 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169946$$aForschungszentrum Jülich$$b1$$kFZJ
000902989 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130263$$aForschungszentrum Jülich$$b2$$kFZJ
000902989 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130219$$aForschungszentrum Jülich$$b4$$kFZJ
000902989 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143905$$aForschungszentrum Jülich$$b7$$kFZJ
000902989 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130233$$aForschungszentrum Jülich$$b8$$kFZJ
000902989 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1213$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
000902989 9141_ $$y2021
000902989 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-04
000902989 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-04
000902989 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-02-04
000902989 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000902989 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL ENERG MATER : 2019$$d2021-02-04
000902989 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-04
000902989 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-04
000902989 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-04
000902989 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-04
000902989 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-04
000902989 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-04
000902989 920__ $$lyes
000902989 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000902989 9801_ $$aFullTexts
000902989 980__ $$ajournal
000902989 980__ $$aVDB
000902989 980__ $$aUNRESTRICTED
000902989 980__ $$aI:(DE-Juel1)IEK-5-20101013
000902989 981__ $$aI:(DE-Juel1)IMD-3-20101013