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Abstract 

Background: Meta-analytical contrasts have become a widely used tool in recent years, 

adding powerful capabilities to the Activation Likelihood Estimation (ALE) meta-analysis 

algorithm (Eickhoff et al., 2011; Laird, Fox, et al., 2005). Through integration of existing 

neuroimaging literature, it allows to show commonalities and differences between 

different subject groups (e.g. Yaple et al., 2019), task modalities (e.g. Langner & Eickhoff, 

2013; Rottschy et al., 2012) or facets of larger cognitive constructs (e.g. Langner et al., 

2018; Morelli et al., 2015). Importantly, it allows to test hypotheses that have not been or 

can’t be addressed at single study level. However, little is known about the validity of 

meta-analytical contrasts, lacking systematic empirical investigations. 

Methods: Focusing on a specific task contrast (n-back), a contrast between two meta-

analyses ((2-back > baseline) > (0-back > baseline)) was compared with a meta-analysis 

across contrasts on experimental level (2-back > 0-back). This was done in a literature-

based approach (i.e. a traditional meta-analysis) and using a large sample of subject level 

contrasts to simulate differently powered meta-analytical contrasts. 

Results & Conclusions: Contrasts between two meta-analyses show regional significant 

stronger convergence to a lesser degree compared to a meta-analysis across contrasts. 

Regions that are identified can be interpreted with relative certainty similar to regions 

found in a meta-analysis across contrasts on experimental level, i.e. likelihood of false 

positives is low. However, it is not recommended to interpret the absence of regions 

because the sensitivity is relatively low. Experiments with contrasts against a control 

condition are found to be more suited than experiments with contrasts against rest/ 

passive baseline conditions for the computation of a contrast between two meta-analyses. 

Finally, an increase in the number of experiments used is associated with better 

sensitivity and similarity, but it seems that above a number of 26 experiments this 

increase is reduced with a higher likelihood of getting false positives. 
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Introduction 

Human brain mapping is the effort to discover the relationships between the anatomy and 

function of the human brain. Over the past 30 years, neuroimaging has emerged as a 

promising method in the study of brain organization, with thousands of publications each 

year. Functional magnetic resonance imaging (fMRI) is a noninvasive imaging technique 

that allows researchers to test cognitive paradigms while simultaneously scanning a 

participant's brain. This so-called task-based fMRI has been and continues to be used to 

study the neural substrate of various neurological and psychiatric disorders, cognitive 

and socio-affective processes, and more. 

Although fMRI has enabled numerous discoveries and contributed to a better 

understanding of the brain, it also has its drawbacks. The temporal resolution is relatively 

low compared to other techniques (e.g. MEG, EEG), the cost of scanning subjects is high, 

and the results are probably highly dependent on a number of factors. 

Those factors include sample size, which is a hotly debated issue (Button et al., 2013; 

Cremers et al., 2017; Geuter et al., 2018; Poldrack et al., 2017; Turner et al., 2018) and in-

scanner time of individual participants, which has been debated in recent years (Nee, 

2019). Another factor is the different (pre-)processing and analysis of fMRI data. Different 

laboratories use different software and different pipelines (Botvinik-Nezer et al., 2020; 

Carp, 2012). Not to mention, that different scanners may produce different results 

(Jovicich et al., 2006). Furthermore, when using task-based fMRI, experimental flexibility 

is an important issue. Thus, different cognitive task paradigms with different variations 

can be used to study the same cognitive process. Variations in these factors can lead to 

differences in results and sometimes make replication nearly impossible (Bossier et al., 

2020). 

Meta-analysis 

A way to overcome the issue of spurious findings, the problem of low power, analytical 

and experimental flexibility in individual fMRI studies are meta-analyses (Cremers et al., 

2017). A meta-analysis on neuroimaging data can show which results, which brain 

regions, which cognitive networks show convergence in brain activations across 

experiments. A widely used and successful method to perform neuroimaging meta-

analyses is the Activation Likelihood Estimation (ALE) (Eickhoff et al., 2009, 2012; 

Turkeltaub et al., 2002) algorithm.  
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Numerous neuroimaging ALE meta-analyses have been performed to identify the neural 

substrate of various psychological constructs, e.g. working memory (Rottschy et al., 

2012), vigilant attention (Langner & Eickhoff, 2013), social cognition (Bzdok et al., 2012) 

and language processing (Ferstl et al., 2008). ALE meta-analysis are also conducted more 

specifically across a single task paradigm, e.g. n-back (Owen et al., 2005), Stroop task 

(Laird, McMillan, et al., 2005), Go/No-go tasks (Simmonds et al., 2008). Other applications 

include the identification of neural differences in different subject groups, e.g. in age 

(Heckner et al., 2020; Yaple et al., 2019) or patient groups, e.g. schizophrenia (Minzenberg 

et al., 2009). 

Meta-analyses have the power not only to confirm and reveal robust brain networks, but 

also to show where there is no convergence across results, potentially indicating 

replicability issues. Negative results are an important topic in science today and 

fortunately receiving more attention. In a meta-analysis, Müller and colleagues (2017) 

found that the current neuroimaging literature does not reveal robust abnormalities in 

major depressive disorder (MDD) patients compared to healthy controls. Another 

example comes from Chuan-Peng and colleagues (2020), who used an ALE meta-analysis 

to demonstrate the lack of a neural basis for a universal beauty center in the brain. 

Despite these qualities of neuroimaging meta-analyses, they are also affected by potential 

pitfalls. A meta-analysis can only be performed on the basis of published literature. 

Accordingly, selective reporting of results (publications bias), p-hacking, etc. are possible 

sources of errors (Müller et al., 2018). The quality of the experiments on which a meta-

analysis is based is therefore of crucial importance. 

Contrast between two meta-analyses 

In addition to the classical meta-analysis that looks for convergent results across 

experiments, there is also the possibility of calculating contrasts and conjunctions 

between meta-analyses similar to individual fMRI experiments. 

An ALE contrast analysis, hereafter referred to as contrast between two meta-analyses 

(Cmeta), was first introduced by Laird et al. (2005).  It was developed to statistically 

compare two ALE maps by testing the null hypothesis that both sets of foci are uniformly 

distributed. Often results of meta-analyses are compared and conclusions are drawn on 

the basis that a region appears in one meta-analysis but not in another. However, such a 

difference may simply be due to the fact that in one meta-analysis the region is just below 
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the significance threshold, while in the other it is just above the threshold. Therefore, a 

test was introduced to formally test whether differences are significant. The tool has been 

further developed and is currently based on a label-exchange permutation test (Eickhoff 

et al., 2011). 

Since its introduction, the contrast between two meta-analyses has been used to examine 

a wide variety of brain-behavior relationships. For example, it can be used to compare 

different subtypes of larger psychological concepts. One example is the comparison of 

verbal and non-verbal WM experiments, which confirmed the role of the left brain area 

44/45 in speech functions (Rottschy et al., 2012). In addition to comparing different task 

modalities, such as auditory versus visual paradigms (Langner & Eickhoff, 2013), 

different tasks can also be compared that are supposed to isolate the same cognitive 

process, e.g. in WM: n-back vs. Sternberg tasks (Rottschy et al., 2012).  A comparison of 

meta-analyses also provides the opportunity to compare different groups of subjects. A 

study by Yaple et al. (2019) showed age-related differences in the convergence of brain 

regions associated with the n-back task. They found a decline in convergence of prefrontal 

cortex engagement with age. Another example is the study of the human self-regulation 

system by Langner and colleagues (2018). They were able to uncover differences in 

cognitive emotion regulation and cognitive action regulation through a meta-analytical 

comparison and confirm these differences through additional analyses. 

Thus, contrasts between two meta-analyses can play a valuable role in testing current 

neurocognitive theories, establishing new theories, and uncovering the neural substrate 

of these. 

Meta-analytical comparisons: two different approaches 

In general, differences between 2 groups or conditions (e.g. condition A > condition B) can 

be investigated with meta-analyses in 2 different ways. Either one does a meta-analysis 

across experiments, that look at the contrast of interest (COI) on an experimental level, 

i.e. one includes in the analysis those experiments that do a subtraction analysis on e.g. 

condition A vs. condition B. This type of analysis is called meta-analysis across contrasts 

on experimental level (MCexp). 

A contrast on an experimental level can be obtained by a subtraction analysis of different 

brain scans. A typical experiment would include a cognitive task with the cognitive 

component of interest (e.g. condition A) and a control task with the same cognitive 
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processes involved but without the cognitive component of interest (e.g. condition B). In 

the subtraction, the brain activity during the cognitive task is compared to activity during 

the control task. Instead of the control task, one can also use the implicit baseline, i.e. 

resting-state measurement (or a fixation baseline). This depends on what the investigator 

is looking for (Price et al., 1997). 

In a MCexp the contrast of interest is calculated always on an experimental level and the 

meta-analysis just shows which brain regions show convergence in brain activations for 

this contrast. In other words, the results of a meta-analysis can be interpreted as the 

convergence of brain activations of a specific COI. 

However, there is also another way to investigate a COI in a meta-analysis. As opposed to 

the MCexp (e.g. condition A > condition B) a contrast can also be calculated on the meta-

analytical level. This is done by performing two independent meta-analyses for both 

conditions of interest (e.g. condition A > baseline and condition B > baseline). And in a 

second step the contrast between two meta-analyses (Cmeta) is calculated. The resulting 

contrast is again a contrast between two conditions (e.g. (condition A > baseline) > 

(condition B > baseline)) but derived in a totally different way. Importantly, a Cmeta is a 

conceptual different contrast, as in the later approach only the differences in convergence 

of brain activations are evaluated and not the convergence of differences of brain 

activations (Müller et al., 2018). In other words, a MCexp shows the convergence of brain 

activations between conditions across different experiments. A Cmeta on the other hand, 

shows stronger convergence of one meta-analysis in comparison to another meta-

analysis. 

Performing a MCexp across a specific contrast, be it a task or group contrast, is probably 

always the preferred choice. This is because a Cmeta probably means a higher loss of 

information compared to a MCexp, due to the conceptual differences explained above. 

However, this strictly limits meta-analyses to contrasts studied multiple times in the 

literature. Cmeta may be the answer to overcome this limitation and ask questions that 

have not been asked at the experimental level or cannot be asked. For example, if one 

wants to compare two clinical groups, like patients with schizophrenia (SCZ) and patients 

with MDD. Contrasts between SCZ vs. controls and contrasts between MDD vs. controls 

probably abound in the literature. However, there may be too few studies that report a 

direct contrast between SCZ vs. MDD. This would mean that it would not be possible to 

compute a MCexp, but it would be possible to compute a Cmeta. While there are many 
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interesting questions that can be addressed with Cmeta, little is known about its validity 

and robustness. 

Validity, robustness and sample sizes 

While the results of an ALE meta-analysis of neuroimaging data are fairly straightforward 

to interpret, it is a bit difficult to interpret a contrast between two meta-analyses. By 

definition, it is a statistical comparison of two ALE maps. This comparison shows in which 

brain regions convergence is significantly stronger in one meta-analysis compared to 

another meta-analysis. The question that arises here, and which has not really been 

empirically investigated yet, is what this stronger convergence states. To what extent 

does this conceptually different contrast reflect the same thing shown by a MCexp? 

Furthermore, the extent to which a meta-analytical contrast identifies regions that are 

really relevant for the process is unknown. Is there a possibility that regions in a Cmeta 

show significantly stronger convergence, but these are not at all related to supposedly 

studied process? 

A major factor that shapes meta-analyses are the experiments used to conduct each 

analysis. Experiment selection is an essential part of meta-analyses and it is important not 

to put apples and oranges together unless one is studying approximately round fruits. A 

strength of meta-analyses is the analysis of heterogeneous data and finding 

commonalities. Potentially, a problem could arise if the dataset is based solely on one type 

of contrast and the reported results do not reflect the totality of the process it purports to 

represent. This could be the case if a contrast is depicting a multitude of processes, as it is 

the case in contrasts between complex conditions versus a rest baseline (Price et al., 1997; 

Stark & Squire, 2001). The baseline condition is crucial here, since it means that more 

processes are subtracted out (higher level baseline) of the contrast or remain in it (lower 

level baseline). Reported results of a contrast against a very low baseline may not reflect 

the totality of all processes. This could invalidate the meta-analysis calculated from it. This 

is true for meta-analyses in general but is equally relevant when one performs a contrast 

between meta-analyses. Therefore, it is essential to be sure that the experiments are 

appropriate for an ALE meta-analysis and that the reported results contain what they 

purport to. 

In the design of every experiment, the sample size is an essential factor for replicability 

and inference. In the field of fMRI research low statistical power, due to small number 
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sample sizes, is subject to an ongoing discourse (Button et al., 2013; Cremers et al., 2017; 

Desmond & Glover, 2002; Poldrack et al., 2017). As for individual fMRI studies, sample 

size is also important for meta-analyses of neuroimaging studies. It is assumed that the 

number of experiments required for a meta-analysis is between 17 and 20. In a simulation 

study, Eickhoff and colleagues (2016) showed that this is the minimum number of 

experiments needed to detect robust medium sized effects and to ensure that the results 

are not driven by single experiments. However, the influence of sample size and what is 

optimal for Cmetas is not yet known. It goes without saying that there should be at least 

17 experiments in each meta-analysis between which the contrast is calculated. However, 

we actually do not know how many experiments are optimal for the current contrast 

analysis. Are 17 experiments sufficient to obtain valid results, or does it need to be more? 

Therefore, an empirical assessment of sample size in Cmetas is necessary to provide a 

basis to help authors of meta-analyses to make an informed decision. 
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Aim and Objectives 

A foundation for understanding the neural basis for cognitive processes is provided 

through decades of research by the neuroimaging community. Contrast analyses at the 

individual study level are one of the widely used practices. However, study-level contrasts 

are limited by numerous factors. At a meta-analytical level, a contrast can potentially 

overcome some of the limitations and address novel and interesting questions. However, 

little is known about the validity and robustness of meta-analytical contrasts.  

The aim of this project is to evaluate and to uncover the factors that influence meta-

analytical contrasts. In the first part of this investigation a meta-analysis across contrasts 

on the experimental level (MCexp) will be evaluated against the contrast between two 

meta-analyses (Cmeta). 

Next, a second set of literature-based meta-analyses will be conducted to test the 

relevance that the type of condition against which the contrast is conducted has on meta-

analytical contrasts. 

Then, a large-sample-simulated meta-analysis will be used to create different scenarios 

to test the influence of the number of experiments on the validity of meta-analytical 

contrasts. 

This is an exploratory study to gain insight into how to interpret meta-analytical 

contrasts, which meta-analytical approaches yield robust results, and ultimately help in 

the design of future meta-analytical studies. 
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Materials and Methods 

Task of interest 

The question of validity and robustness of meta-analytical contrasts was investigated 

using the example of a specific cognitive task. The “n-back” paradigm (Kirchner, 1958) 

was chosen because it is widely used in the literature, well established and performed in 

a relatively similar way (Owen et al., 2005). This working memory paradigm consists of a 

series of stimuli presented to a participant. The participant is asked to identify the stimuli 

that were presented to her/ him n trials back (Figure 1). Typically, n is equal to 1, 2 or 3. 

In the case of a control task (e.g. 0) the participant is simply asked to identify a stimulus 

that is defined prior to the trial. Other control conditions could be either a passive fixation 

baseline, or resting state measurements (classified as rest) or a more engaging baseline, 

e.g. flashing fixation cross (classified as baseline). To investigate the research question, 

contrasts between the following conditions were selected: 2-back > 0-back, 2-back > rest/ 

baseline, 0-back > rest/ baseline, 2-back > 1-back, 2-back > rest/ baseline, 2-back > 0-

back, 1-back > rest/ baseline, 1-back > 0-back.  

Figure 1. Letter n-back paradigm.  The red circle indicates the stimulus to be identified. 
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Literature-based meta-analysis 

Literature search 

The data for the literature-based meta-analyses was collected in three different ways. The 

initial dataset was based on the n-back studies collected by Rottschy et al. (2012).  

Secondly, reference tracing was carried out from other previous meta-analytical studies 

by Langner & Eickhoff (2013); Yaple et al. (2019) and Mencarelli et al. (2019). In addition 

to this method, two online search engines, “pubmed” (https://pubmed.ncbi.nlm.nih.gov/) 

and “web of science” (http://webofknowledge.com/) were searched for the following 

keywords: (̶fMRI̶ OR “functional MRI” OR “functional magnetic resonance imaging”Ȍ 

AND ("n-back̶ OR “Ͳ-back” OR “zero-back”Ȍ. Additional filters were chosen to include 

only human studies and a publication date between 2012/01/01 - 2020/01/01. After 

reading the abstracts, a total of 254 articles were further analyzed. A second effort was 

made by contacting authors directly via E-Mail with a request to contribute additional 

results, if available. This was done when none of the desired coordinates were reported 

in the publication, but the study design met the criteria. Or when some contrasts were 

reported (e.g., studies that were already part of the previous dataset) and the 

analysis/study design implied that other contrasts were analyzed but not reported in the 

publication. The e-mail address was determined by a "Google" search of the 

first/corresponding author, if no valid e-mail was found, the last author was contacted 

instead. This may be the case, for example, if the first author has moved to another 

research group or a position in industry. If the first request was not answered, a friendly 

reminder was sent a few weeks later. 

Inclusion and exclusion criteria 

In accordance with the general guidelines (Müller et al., 2018), the experiments were 

considered eligible if they contained coordinates of whole-brain contrasts (not ROI), used 

standard analysis procedures, the subjects were healthy (healthy control groups and 

healthy variations of the general population; i.e. no diagnosed diseases) and were over 18 

years of age. An experiment was included if any of the contrasts of interest (COI) was 

reported, all other contrasts were excluded (e.g. 3-back > 0-back). Furthermore, only 

positive contrasts (i.e. 2-back > 0-back) were considered, since only a small fraction 

reported deactivations (i.e. 0-back > 2-back). Experiments that reported different 

variations of the "n-back" paradigm (e.g. spatial or verbal tasks; different types of stimuli 

such as visual or auditory) were included. Experiments were excluded when an 

https://pubmed.ncbi.nlm.nih.gov/
http://webofknowledge.com/
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intervention was part of the experimental design (e.g. drug testing or working memory 

training). However, if a baseline measurement (without any intervention) was attempted, 

the resulting contrast would meet the requirements. 

Coding of coordinates 

If coordinates were available in the peer-reviewed studies, the coordinates of the 

contrasts of interest were coded. As most studies reported only the main effect of working 

memory (i.e. 2-back > 0-back), and not always the contrasts against rest/ baseline, 

potential authors were kindly asked to contribute their additional data, if available. The 

additional, not peer-reviewed results were provided in different formats. Some were 

output tables of the used analysis software (SPM/ FSL), with the local maxima of the 

clusters, others were (unthresholded) activation t-maps (in Nifti-format). To extract the 

relevant foci, the methods described in the corresponding studies were used (i.e. 

correction method, cluster extent). If no or unclear information about the coordinate 

extraction was available, all of the provided coordinates (or local peak maxima) were 

extracted and coded. If the results were sent as activation maps, the first 10 peak 

coordinates per cluster and a cluster extent threshold of k = 10 were used. For the 

coordinate extraction the SPM Anatomy Toolbox v2.2 (Eickhoff et al., 2005) was used.  

The control conditions were classified as “rest” if the control conditions for the computed 

contrast were either resting state measurements or a passive fixation baseline (i.e. a 

stationary fixation crossȌ. The category “baseline” was chosen if the participants were 

asked to pay attention to a flashing fixation cross, or passively perceived the stimuli (e.g. 

the trials in the same frequency). 

A reported contrast (i.e. a set of coordinates corresponding to a contrast between two 

conditions) is counted as one experiment. Thereby one study (i.e. one publication) can 

report more than one experiment (for example one study reporting 2-back > 0-back, 2-

back > rest and 0-back > rest in the same subject group). If more than one experiment per 

group was reported for different conditions all experiments were selected as they were 

included in different meta-analyses. However, if for one subject group the same contrast 

was reported twice, e.g. with a different n-back paradigm but between the same 

conditions (e.g. 2-back > 0-back visual n-back and 2-back > 0-back auditory n-back) only 

one of them was included in the dataset. This was done to reduce effects driven by a 

specific group of subjects. 
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In total the dataset of all experiments (including received results) for both approaches 

(contrast comparison, investigation of baseline condition) consisted of 108 studies and 

170 experiments. More precisely, the dataset consisted of 62 experiments with the 

contrast 2-back > 0-back, 20 experiments with the contrast 2-back > 1-back, 31 

experiments with the contrast 2-back > rest/ baseline, 21 experiments with the contrast 

0-back > rest/ baseline, 19 experiments with the contrast 1-back > 0-back and 17 

Figure 2. Flowchart of literature-based meta-analyses. 
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experiments with the contrast 1-back > rest/ baseline. For 10 groups all the 3 COI for the 

contrast comparison (2-back > 0-back; 2-back > rest/ baseline, 0-back > rest/ baseline) 

was available. Detailed information about the included experiments can be found in the 

Supplementary Information (Supplementary Table 1) and about the analysis steps Figure 

2. 

Activation Likelihood Estimation (ALE) 

The coordinate-based meta-analyses were calculated  with the ALE algorithm (Eickhoff et 

al., 2009, 2012; Turkeltaub et al., 2002, 2012).  For the computation the Python-based 

NiMARE implementation of the ALE algorithm was used (Salo et al., 2020).  

In ALE, the reported foci from each study are treated as the centers of 3D Gaussian 

probability distributions reflecting spatial uncertainty. The width of the distributions 

depends on the number of subjects from a study. Larger sample sizes may reflect more 

reliable spatial accuracy and therefore result in narrower widths. For each experiment, 

all probability distributions of all reported foci are combined into a modeled activation 

map (MA). This results in one MA map per experiment with associated probabilities at 

each voxel. When the Gaussian probability distributions of different foci overlap, the 

probabilities associated with the voxel within that overlap are given only by the foci 

closest to that voxel. This is done to avoid the summation of within-group effects 

(Turkeltaub et al., 2012). Then, for each voxel, the union of all probabilities across MA 

maps (i.e. individual experiments) is calculated. The ALE scores derived in this way show 

convergence across experiments rather than individual foci (Eickhoff et al., 2009). 

To distinguish true convergence from random convergence, the ALE maps are tested 

against a null distribution. This null distribution is analytically derived, based on a 

nonlinear histogram algorithm and reflects the random spatial associations (Eickhoff et 

al., 2012). In this algorithm, each MA-map is converted into a histogram. The histogram 

shows the probability of the occurrences of all possible MA-values (i.e. activation 

probability) by joining all voxels with the same MA-value (including zeros) in single 

histogram-bins. Under the assumption of spatial independence, the normalized 

histograms are combined by cycling through all the non-zero bins of two histograms. The 

combined histogram is then joined with a third histogram and so on until a final histogram 

representing a probabilistic distribution of ALE-values is derived. 
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To correct for multiple comparisons, an empirical null distribution is generated using a 

permutation approach. A cluster-wise family-wise error corrected (cFWE) threshold at p 

< 0.05 with a cluster-forming threshold of p < 0.001 is used. At each of the 10000 

permutations the foci are exchanged with randomly selected voxels within a grey matter 

mask, ALE values are calculated and the maximum cluster size per permutation is 

recorded. A cluster is treated significant if its size is larger than or equal to the 95 % 

(cluster extent threshold of p < 0.05) percentile of the generated clusters. Reported peaks 

reflect the local maxima z-scores of the uncorrected map at voxel-level. 

ALE contrast analyses 

As introduced by Laird et al. (2005) and modified by Eickhoff et al. (2011), the statistical 

comparison between two ALE Maps was performed using the NiMARE ALESubtraction 

algorithm implemented in version 0.0.3. (Salo et al., 2020). The algorithm was used to 

compute the contrast analysis, one-sided (activations only) across all voxels. Specifically, 

the two original ALE scores are calculated for two groups and then a difference score is 

calculated for each voxel (i.e. voxel-wise subtraction). In a permutation-based approach, 

all experiments (contributing to one of the contrasts) are pooled and randomly divided in 

two groups of experiments with the same size as the original groups. The ALE scores of 

these pooled groups are calculated and the differences in the ALE score for each voxel are 

recorded. By repeating this label exchange process 10000 times, an empirical null 

distribution of differences in ALE scores is formed against which the observed differences 

in ALE scores are tested. The voxels are then tested for significant differences at a 

threshold of P > .95 (i.e. the observed probability is equal or higher than 95 % chance 

level).  In addition, the contrast map is inclusively masked with the significant cFWE-

corrected main effect of the respective group. Note that masking is not performed within 

the original NiMARE implementation but conducted subsequently in order to draw 

inference from the contrast analysis. On a second note, the technique described does not 

correct for multiple comparisons. 

Evaluation of meta-analytical contrasts 

First, it will be investigated to what extent a contrast between two meta-analyses reflects 

what is shown in a meta-analysis across contrasts on experimental level (MCexp). For the 

MCexp experiments are used that contrast the two conditions of interest (i.e. contrast 

between condition A > condition B). To calculate the contrast between two meta-analyses 

(Cmeta) requires a two-step procedure: first two meta-analyses are calculated, one for 
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each condition of interest against a resting baseline (meta-analysis 1: condition A > 

implicit baseline and meta-analysis 2: condition B > implicit baseline). Second, a contrast 

between these two meta-analyses is performed. Thus, the same contrast is calculated as 

in the first meta-analysis (meta-analysis across contrasts), but in a conceptually different 

way. 

The current project includes all experiments reporting the 2-back > 0-back contrast for 

the MCexp (Figure 2). Conceptually, this meta-analysis reveals all those regions that 

consistently show stronger activation in 2-back vs. 0-back across experiments. 

Additionally, two meta-analyses with all experiments with the 0-back > rest/ baseline 

(condition B > implicit baseline) contrasts and a second with the contrasts 2-back > rest/ 

baseline (condition A > implicit baseline) are performed and then contrasted with each 

other on the meta-analytical level (i.e. (2-back > rest/ baseline) > (0-back > rest/ 

baseline)) (Figure 2). This contrast shows conceptually all those regions that show more 

convergence in one meta-analysis than in the other. This conceptually different contrasts 

(MCexp and Cmeta) are than compared and similarities and differences evaluated. This is 

done in a visual descriptive approach and by calculating different similarity metrics 

(which will be described in more detail later). 

Evaluation of contrast baseline/ control conditions 

A second approach was chosen to investigate the influence that the type of condition 

against which the contrast is performed has on the results of Cmeta. In contrast to the first 

approach, where meta-analyses were calculated that included experiments against a rest/ 

fixation baseline (condition A/B > implicit baseline), Cmeta between two meta-analyses 

across experiments contrasting against a control condition (condition A/B > condition C) 

was additionally performed. The MCexp is computed across all 2-back > 1-back 

experiments (condition A > condition B) and one Cmeta between the 2-back > rest/ 

baseline (condition A > implicit baseline) and 1-back > rest/ baseline experiments 

(condition B > implicit baseline) and a second Cmeta between 2-back > 0-back (condition 

A > condition C) and 1-back > 0-back experiments (condition B > condition C) were 

computed. Thereby three contrasts are computed, all in a conceptual different way 

(Figure 2). 

The collected sample (Supplementary Table 1) was reduced because the number of 

experiments in each meta-analysis varied widely. The reduced sample included all 20 “ʹ-

back > 1-back” experiments, all ͳͻ “ͳ-back > 0-back” experiments, ͳͻ hand-matched “ʹ-
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back > 0-back” experiments, all ͳ͹ “ͳ-back ε rest/ baseline” experiments and 17 hand-

matched “ʹ-back ε rest/ baseline” experiments. The matching of studies was performed 

in order to get pairs of relatively similar studies. First all experiments were included of 

studies were both conditions were reported (i.e. 2-back > 0-back and 1-back > 0-back; or 

2-back > rest/ bsl. and 1-back > bsl.). The remaining experiments were matched to the 

respective lower level contrasts primarily by sample size and modality, secondly by 

stimulus and age group (Supplementary Table 1). Note that the subsampling in the meta-

analysis across 2-back > rest/ baseline and meta-analysis across 2-back > 0-back was 

conducted just once. 

Comparison of the meta-analytical results to the n-back network derived 

from a large individual fMRI study 

In addition to the above described meta-analysis across 2-back > 0-back experiments a 

second reference contrast was computed using a large sample from the HCP dataset (Van 

Essen et al., 2013). This reference contrast is not based on a meta-analysis, but is a single, 

individual experiment looking at the contrast of interest in a large sample of subjects. This 

allows the meta-analytical contrasts to be compared to an independent contrast. 

HCP 

The HCP 1200 Subjects Release (S1200) contains data of 1206 subjects, 657 subjects are 

female with a mean age of 30.01 (Std. deviation: 3.522) and 549 subjects are male with a 

mean age of 28.48 (Std. deviation: 3.665). The HCP dataset includes a wide range of 

related subjects, twins and relatives. This means a lot of the subjects come from the same 

family. Within the whole release there are 457 unique Family IDs. The release contains 8 

different task paradigms. For the comparison to the meta-analytical results the working 

memory (WM) n-back task fMRI data was used. After exclusion of subjects with known 

quality issues (HCP Data Release Updates: Known Issues and Planned Fixes - Connectome 

Data Public - HCP Wiki; HCP Subjects with Identified Quality Control Issues (QC_Issue 

Measure Codes Explained)) and including only subjects who completed the n-back task 

and scored > 50 % Accuracy in 2-back condition  the whole sample consisted of 1020 (435 

unrelated) subjects.  

The Data was pre-processed according to the minimal pre-processing pipeline and 

analyzed with the FSL FEAT module (Glasser et al., 2013). 
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Subject and group level GLM modelling 

As current literature, especially older studies are based entirely on volume based 

processing the minimally preprocessed volume based time-series (Glasser et al., 2013) 

for the WM task were used to create subject-level WM maps of the COIs (2BK, 0BK, 2BK-

0BK) using a modified version of the HCPpipeline scripts (Barch et al., 2013; 

https://github.com/Washington-University/HCPpipelines). Following a temporal 

filtering, using a high pass filter of 200 the time series were smoothed using a FWHM of 

8mm. This kernel width was chosen as it is found to be the most frequently used in the 

experiments constituting the literature dataset. The GLM model fitting was done 

according to the Volume-Based Analysis of the HCP pipeline, eight predictors were 

included for each stimulus type in each n-back condition (Stimuli: faces, places, body, 

tools; conditions: 0-back, 2-back). The predictors ranged from the presentation of the cue 

to the final trial of a stimulus block (27.5 s). These blocked predictors were convolved 

with a double “canonical” hemodynamic response function (HRFȌ. The temporal 

derivatives of each predictor were included as regressors of no interest to compensate for 

slice timing variability and HRF delay across regions (Barch et al., 2013). 12 movement 

regressors were included (6 motion parameter estimates from the rigid-body 

transformation and their temporal derivatives) as further confounds of no interest. Three 

linear contrasts were computed on basis of this GLM model: 2-back vs. 0-back, 2-back vs. 

fixation, 0-back vs. fixation. For subject-level effect estimates a fixed-effects analysis was 

conducted across both runs, within subjects. The HCP pipeline scripts are based on the 

FSL FEAT module (Woolrich et al., 2001, 2004). 

The group-level GLM was calculated using a Python NiPype (Esteban et al., 2020) based 

workflow using the FSL interface (Woolrich et al., 2004). The analysis scripts are based 

on an example task based FSL workflow created by Esteban et al., 2019. The group level 

effects were estimated using the FSL FLAME (FMRIB's Local Analysis of Mixed Effects) 

module conducting a one-sample t-test between a random draw of unrelated subjects 

(435). As the estimated effects for the HCP reference networks were very large after 

voxel-wise FWE correction, resulting in a single cluster per map, effect size maps were 

computed. The computation of the effect-size (Cohen’s d) estimates was done by dividing 

the group-level contrast of parameter estimate (COPE) by the square root of the estimated 

variance of parameter estimate (VARCOPE) divided by the square root of the sample size 

(N) 435 (see Equation 1) (Poldrack et al., 2017). 
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Equation 1. Effect size estimation. 

𝐶݄݊݁݋ᇱݏ 𝑑 ݉𝑎݌ ൌ  

𝐶𝑂𝑃𝐸
√𝑉𝐴𝑅𝐶𝑂𝑃𝐸

√𝑁
 

The resulting effect size map was thresholded at d = 0.5 (medium effect size) to get only 

medium to high effects according to Cohen (Cohen, 2013). This is done because ALE meta-

analyses detect usually detect only moderate to strong effects (Eickhoff et al., 2016; 

Salimi-Khorshidi et al., 2009). 

Large-sample-simulated meta-analysis 

Analogous to the meta-analytical contrast evaluation using a literature derived dataset a 

second investigation was conducted to evaluate the influence of sample size on a meta-

analytical contrast and validate the from literature derived findings. Therefore, a large 

sample (HCP) was used to simulate (mimicking a realistic meta-analysis scenario) 

differently powered meta-analyses. This was done by creating a pool of subject-level 

contrasts, as described above and drawing from this sample different studies. Group 

(study) level contrasts were computed and subsequently one MCexp and one Cmeta was 

computed. This was repeated with different numbers of studies (K) and 100 iterations for 

each variation. The Cmeta was compared to the MCexp within the iteration and to the 

literature meta-analysis across 2-back > 0-back network. 

Drawing and computing of studies 

The subject level analysis is equal to the above described pipeline for the large sample 

contrast. From the above described n-back sample, for 3 subjects the data was unavailable 

resulting in 1017 subject level contrasts. For each of the 100 iterations, from the pool of 

subjects, K ‘studies’ were drawn. A study is analogous to the literature in that it is a set of 

group-level contrasts based on a particular set of subjects. The number of studies for a 

meta-analysis was varied between 17 and 38 in steps of 3. The maximum of K was 

determined by the absolute sample size. The minimum was chosen according to the 

minimum recommendations for an ALE meta-analysis by Eickhoff and colleagues (2016). 

The number of subjects per study (N) are based on the 2-back > 0-back literature dataset 

(i.e. the 62 experiments with the contrast 2-back > 0-back). This means a study could 

contain between 8 and 84 subjects. The individual subsamples were drawn from a 

uniform distribution (between 8 and 84), but such that the overall mean was equal to the 

mean number of subjects of the literature dataset (26.24 ± 0.25). The subject drawing was 
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done without replacement and preventing 2 subjects in one study with the same family 

ID (i.e. every study contains only unrelated subjects). This was done to prevent 

heritability related effects within a study (Blokland et al., 2011). For every study the group 

level effects for all 3 contrasts (2-back vs. 0-back, 2-back vs. fixation, 0-back vs. fixation) 

were estimated as described for the large sample (n = 435) contrast. 

Coordinate extraction 

Three different thresholding methods were used for the group-level contrasts. Cluster-

level FWE p < 0.05 corrected (0.001 cluster-forming threshold), uncorrected p < 0.001 

and voxel-level FWE corrected 0.05. These were chosen as they represent the three most 

frequent methods found in the literature dataset. For every study one thresholding 

method was randomly determined. If no significant activations remained after 

thresholding, another method was chosen. In a few cases (in 6 of 22000 studies) of small 

subject sizes (e.g. N = 8) activations were not seen in the 2-back > 0-back contrast. In these 

cases, only the significant contrasts were picked. Coordinates were extracted from the 

randomly chosen thresholded maps. All local maxima were extracted with a minimum 

distance of 16 mm. These criteria were chosen to cover the whole range of large clusters 

and limiting the overall number of peaks by choosing a relatively wide peak distance. 

Meta-analyses 

Based on the extracted coordinates, 3 meta-analyses were computed for every iteration 

within every variation of K. As in the literature-based approach, 1 meta-analysis across 

all 2-back > 0-back contrasts were computed and a contrast between the meta-analysis 

across 2-back vs. fixation and across 0-back vs. fixation. The ALE meta-analyses and 

contrast between two-metanalyses computations were performed as described above. 

Measure of similarity and validity 

Comparisons are performed between the Cmetas and reference networks. The different 

reference networks are regarded as the validation networks. Similarity (as Jaccard 

similarity coefficient), sensitivity and specificity as described below are regarded 

measures of criterion validity. 

The literature-based dataset was used for two meta-analytical investigations. In the first 

analysis, the similarity between a Cmeta and two reference networks (MCexp and large-

sample contrast) was evaluated. In the second analysis, two Cmetas were compared to 

one MCexp reference network to examine the influence of contrasting conditions on 
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Cmetas. Quantitative similarity, sensitivity and specificity between the Cmeta and the 

reference networks was assessed by a voxel-wise comparison across the entire brain. In 

addition, a ROI-wise comparison was performed to provide a more qualitative 

comparison. 

In the large-sample-simulated meta-analyses, the Cmetas were compared with two 

reference networks. The first comparison with the MCexp within iteration, derived from 

the same studies. The second comparison with the literature-based MCexp across 2-back 

> 0-back contrasts. As before, voxel-wise and ROI-wise similarity, sensitivity and 

specificity were calculated. This was performed for each iteration. Subsequently, the 

measured similarities were averaged over the iterations. Lastly, multiple one-way 

ANOVAs with subsequent post-hoc tests were conducted to assess the effect of sample 

size (K) on measured similarity, sensitivity and specificity.  

Jaccard coefficient, sensitivity and specificity were computed on the Python based nilearn 

package (0.6.2) (Abraham et al., 2014). The statistical significance tests were conducted 

with the stats package in the R programming language (4.0.3). 

Jaccard similarity coefficient 

The percent overlap of two fMRI networks was computed using the Jaccard similarity 

coefficient (Jaccard, 1901). This measurement is similar to the similarity coefficient of 

Dice and Sørensen (Dice, 1945; Sørensen, 1948) and was introduced as a measure for 

reproducibility in fMRI studies by calculating the percent overlap of activations (Maitra, 

2010).  

The Jaccard coefficient as a comparison of two ALE/ activation maps (Cmeta vs. reference) 

is the intersection divided by the union of all significant voxels/ regions of both maps. 

Following the binary classification test between the two maps, the intersection can also 

be described as all true positives (TP) (sign. voxels/ regions in Cmeta and in reference). 

The union can be described as the sum of TP, false negatives (FN) (sign. voxels/ regions 

not in Cmeta but in reference) and false positives (FP) (sign. voxels/ regions in Cmeta but 

not in reference) (see Equation 2). 

Equation 2. Jaccard similarity coefficient 

𝐽𝑎𝑐𝑐𝑎ݎ𝑑 ൌ
𝑇𝑃

𝑇𝑃 ൅ 𝐹𝑁 ൅ 𝐹𝑃 
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A Jaccard coefficient of 1 would indicate a perfect overlap of both maps. All sign. and not 

sign. voxels/ regions would be identical in that case. The minimal Jaccard similarity 

coefficient is 0. 

Sensitivity and Specificity 

Sensitivity and specificity are widely used measures  in medicine (Altman & Bland, 1994). 

While in medical diagnostics those measures assess the validity of a test, in this study they 

are an assessment of the validity of the Cmeta. 

Sensitivity measures the proportion of sign. voxels/ regions (positives) that are correctly 

identified in the Cmeta. Correctly in this context means as in the reference map. Based on 

the measures of binary classification, as described above, the sensitivity (true positive 

rate, TPR) can be computed as true positives divided by the sum of true positives and false 

negatives (see Equation 3). 

Equation 3. Sensitivity, true positive rate. 

𝑇𝑃𝑅 ൌ  
𝑇𝑃

𝑇𝑃 ൅ 𝐹𝑁 

The sensitivity range is from 0 to 1. A TPR of 1 would indicate that the Cmeta is depicting 

all sign. regions/ voxels present in the reference.  

Specificity measures the proportion of not sign. voxels/ regions (negatives) that are 

correctly identified in the Cmeta. The specificity (true negative rate, TNR) can be 

computed as all true negatives (TN) (not sign. voxels/ regions in both maps) divided by 

the sum of true negatives and false positives (see Equation 4). 

Equation 4. Specificity, true negative rate 

𝑇𝑁𝑅 ൌ  
𝑇𝑁

𝑇𝑁 ൅ 𝐹𝑃 

A TNR of 1 would mean that all not sign. voxels/ regions in the reference are also not sign. 

in the Cmeta. The closer the TNR is to 0, the more regions are falsely identified. 

Voxel-wise comparison 

The first measure of similarity was done by comparing the whole brain. First, both maps 

(Cmeta and references) are binarized, such that all sign. voxels are coded as 1 and all non-

sign. voxels as a 0. Then, both maps are compared voxel by voxel. From this, the binary 

classifications (TP, FP, TN, FN) can be calculated as described above. Based on the 
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classifications the Jaccard-coefficient (Equation 2), sensitivity (Equation 3)  and 

specificity (Equation 4) were calculated. 

The resulting coefficients indicate the extent to which the Cmeta map matches the 

reference maps. This voxel-wise similarity is based on the premise that the maps to be 

compared should ideally be identical. A Jaccard similarity coefficient of 1 would indicate 

the same voxels are sign. in both maps. 

ROI-wise comparison 

However, for the evaluation of the meta-analytical contrast it is not necessary that the 

voxels of both maps are identical.  It is much more important that all regions covered in 

the reference contrasts are also represented in the Cmeta. Thus, it is more a question of 

an overlap of the regions than a similarity of the whole maps. Therefore, an additional 

ROI-wise approach was chosen. 

To identify ROIs, a combined atlas of the Brainnetome 246 and Diedrichsen 28 region 

probabilistic atlas of the human cerebellum was used (J. Diedrichsen et al., 2011; Jörn 

Diedrichsen et al., 2009; Fan et al., 2016). This combined 1.25 mm  parcellation (BNA274) 

(http://www.brainnetome.org/resource/) was resampled using FSL FLIRT (FMRIB's 

Linear Image Registration Tool) to 2 mm isomorphic (Greve & Fischl, 2009; M. Jenkinson 

& Smith, 2001; Mark Jenkinson et al., 2002). Using this combined parcellations the 

qualitative difference between the Cmetas and the reference networks was calculated by 

comparing if within a given ROI significant voxels were detected. 

Given the measures of similarities, as described above, the Cmeta maps were compared 

with the reference maps. If at least 1 voxel is significant in each of the two images 

(reference and Cmeta) in an ROI, the ROI is counted as a true positive (TP), if a ROI 

contains significant voxel only in the reference but not in the Cmeta it is considered a false 

negative (FN), if a ROI contains in both networks no significant voxels it is considered a 

true negative (TN) and if only in the Cmeta sign. voxels are within the ROI it is considered 

a false positive (FP).  From this, the Jaccard similarity coefficient (Equation 2), sensitivity 

(Equation 3)  and specificity (Equation 4)  were calculated. 

Anatomical labelling 

All labelling of the anatomic regions was done by referring to the up to now histologically 

defined brain regions as reported within the SPM Anatomy Toolbox Version 3 (Eickhoff 

et al., 2005). Cytoarchitectonic locations were reported if the probabilities exceeded 5 %. 

http://www.brainnetome.org/resource/
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Detailed information on the cytoarchitectonic maps can be found in the respective 

publications on Area 44 and Area 45 (K. Amunts et al., 1999; Katrin Amunts et al., 2004), 

on Area hIP1 (IPS), Area hIP2 (IPS),  Area hIP3 (IPS), Area 7PC (SPL), Area 7P (SPL) and 

Area 7A (SPL) (Scheperjans, Eickhoff, et al., 2008; Scheperjans, Hermann, et al., 2008), on 

Area hIP6 (IPS) and Area hIP8 (IPS) (Richter et al., 2019) and on Area 6mr / preSMA 

(Ruan et al., 2018). In addition, information about the microanatomical region was given 

for all resulting brain regions. 

Code and data availability 

All scripts and data used in the analyses will be gladly provided on request. 
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Results 

Evaluation of meta-analytical contrasts 

A meta-analysis across all 2-back > 0-back experiments was performed to calculate a 

literature derived reference network for a meta-analytical contrast. In this meta-analysis 

across contrasts on experimental level (MCexp), significant convergence was found in the 

left Broca’s Region (ͶͶ/ ͶͷȌ and smaller cluster in the right Area 45, left and right middle 

frontal gyrus (MFG), left and right IPS/ SPL, paracingulate gyrus and (pre-)SMA, bilateral 

cerebellum, left frontal pole (FL), left caudate and thalamus and a bilateral cluster 

spanning over the posterior part of the orbitofrontal cortex (OFC) and the anterior insular 

cortex (aINS) (Table 1, Figure 3) 

Table 1. Brain regions involved in 2-back versus 0-back networks revealed by MCexp and Cmeta 

Contrast Cluster 
Voxel 

Local Peaks 
(Macroanatomical 
location) 

Cytoarchitectonic 
Location - Probabilities 
at local maximum (%) 

MNI 
coordinates 

z-score 

 x y z  

MCexp: 2-
back > 0-
back  

1622 L PreCG Area 44, 25.2 % -42 4 28 8.13 
 L MFG  -28 0 54 7.75 
 L IFG (p. 

Opercularis) 
Area 44, 8 % 
Area 45, 15.1 % 

-46 18 26 6.38 

1556 L SMG, posterior 
division 

Area hIP1 (IPS), 56.8 % 
Area hIP2 (IPS), 14.4 % 
Area hIP3 (IPS), 6.4 % 

-34 -48 38 8.13 

1469 R ANG Area hIP1 (IPS), 76.1 % 
Area hIP2 (IPS), 22% 

42 -48 42 8.13 

  R LOC, superior 
division 

Area hIP1 (IPS), 19.3 % 
Area hIP3 (IPS), 22.6 % 
Area hIP6 (IPS), 6.9 % 

32 -58 46 7.01 

  R PCUN Area 7A (SPL), 11.9 % 
Area 7P (SPL), 5.5 % 

10 -66 52 6.16 
 

 1023 R PcG Area 6mr / preSMA, 
9,7 % 

4 14 46 8.13 

Figure 3. Meta-analysis across 2-back > 0-back experiments (62). 
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  L SMA Area 6mr / preSMA, 
72.4 % 

-4 8 58 6.75 

 789 R MFG - 30 4 54 8.13 
  R MFG - 40 10 46 5.64 
 575 R MFG Area 45, 20.8 % 46 32 26 6.32 
 546 R OFC - 36 22 -8 8.13 
 532 L Cerebellum 

(Crus I) 
- -32 -60 -34 8.08 

 520 R Cerebellum 
(Crus I) 

- 32 -62 -30 8.13 

 420 L INS - -30 20 -6 8.13 
 336 L FL - -36 48 8 5.55 
 201 R Cerebellum 

Lobule VI 
- 10 -76 -24 8.08 

 177 L LOC superior 
division 
 

Area 7P (SPL), 37.7 % 
Area 7A (SPL), 22.5 % 

-12 -70 56 5.38 

 173 L Cerebellum 
Lobule VI 

- -8 -76 -28 7.51 

 126 L Caudate Nucleus - -16 -2 16 5.04 
  L Thalamus - -12 -8 8 4.57 

Cmeta: 
(2-back > 
rest/bsl.) 
vs. (0-back 
> rest/bsl.) 

425 L SMG posterior 
division 

Area hIP2 (IPS), 32.2 % 
Area hIP3 (IPS), 31.4 % 
Area hIP1 (IPS), 27.1 % 
Area 7PC (SPL), 9.3 % 

-40 -46 42 8.21 

  L SMG, posterior 
division 

Area hIP1 (IPS), 47.4 % 
Area hIP2 (IPS), 25.7 % 
Area hIP3 (IPS), 20.1 % 
Area 7PC (SPL), 6.9 % 

-38 -50 42 3.72 

  L LOC, superior 
division 

Area hIP6 (IPS), 35.5 % 
Area hIP3 (IPS), 14.0 %  
Area hIP8 (IPS), 5.9 % 

-28  -68  44 2.69 

 125 R ANG Area hIP1 (IPS), 69,6% 
Area hIP2 (IPS), 30.1 % 

40  -48  40 2.89 

 95 R OFC - 32 24 -8 2.71 
 63 L OFC - -34 24 -6 2.27 
 51 R SFG - 28    4 62 2.24 
 3 L MFG - -50 14 36 2.16 
 1 LOC, superior 

division 
Area 7A (SPL), 63.9 % 
Area hIP3 (IPS), 11.3 % 

26 -62 58 1.7 

Note: MCexp = Meta-analysis across contrasts on experimental level, Cmeta = Contrast between two meta-

analyses; L = left hemisphere, R = right hemisphere; Cytoarchitectonic areas:  Area 44 and Area 45 (K. 

Amunts et al., 1999; Katrin Amunts et al., 2004); Area hIP1 (IPS) and Area hIP2 (IPS) (Choi et al., 2006); 

Area hIP3 (IPS), Area 7PC (SPL), Area 7P (SPL) and Area 7A (SPL) (Scheperjans, Eickhoff, et al., 2008; 

Scheperjans, Hermann, et al., 2008); Area hIP6 (IPS) and Area hIP8 (IPS) (Richter et al., 2019); Area 6mr / 

preSMA (Ruan et al., 2018). 
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A second reference network of the contrast of interest was computed in only one 

individual experiment but from a large sample of subjects (n = 435). The contrast of 2-

back > 0-back shows higher activations in a large bilateral frontal-parietal network.  The 

frontal part of the network spans bilaterally from the orbitofrontal cortex, across the MFG 

(including DLPFC), parts of the SFG (including Broca’s region (44/ 45)) and the insular 

cortex.  On the medial surface including the paracingulate gyrus and the medial part of the 

SFG and anterior part of the supplementary motor cortex. Subcortical regions include the 

bilateral striatum (including ventral/dorsal caudate, nucleus accumbens, putamen) and 

parts of the thalamus. Parietal regions include the bilateral superior and inferior parietal 

lobule. Additionally, on the right hemisphere, is the right middle and inferior temporal 

gyrus, posterior division showing activation differences. Large parts of the cerebellum 

(not illustrated in the figure) show also activation differences. Lastly, some activation 

differences included regions in the brain stem (Supplementary Figure 2 A),B); Figure 4) 

The same contrast (2-back > 0-back) was computed on a meta-analytical level by taking a 

conceptual different approach. First, two meta-analyses were conducted across 

experiments, one meta-analysis across 2-back > rest/ baseline (31 experiments) 

contrasts and one meta-analysis across 0-back > rest/ baseline (21 experiments) 

contrasts. Significant convergence in these meta-analyses can be found in the 

Supplementary Figure 1. 

Secondly, the ALE map of the experiments across 2-back > rest/ baseline was contrasted 

with the ALE map of the experiments across 0-back > rest/ baseline. Clusters of significant 

stronger convergence are found in the left and right IPS/ SPL, left and right aINS/  

posterior OFC, right SFG and a very small cluster in the left MFG (Table 1, Figure 5). 

Figure 4. Large-sample 2-back > 0-back network. 
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Assessing the similarity of the contrast between two meta-analyses (Cmeta) (whole 

sample) with the two reference networks, no regions showing significant stronger 

convergence in the Cmeta lay outside the MCexp and the large-sample contrast. The 

Cmeta network is generally smaller, and several frontal regions that are found in the 

MCexp (and large-sample contrast) are not found in the Cmeta. The common regions are 

the left and right IPL (rostrodorsal, caudal)/ SPL (intraparietal, lateral), left and right aINS 

(or posterior OFC), right SFG (dorsolateral area 6) and the left MFG (inferior frontal 

junction) (See Figure 5 for overlap to MCexp and Supplementary Figure 2 for overlap to 

large-sample contrast). 

The calculated percent-overlap between the MCexp and the Cmeta is greater than the 

percent-overlap between the large-sample contrast and the Cmeta. This is true for the 

whole brain calculated Jaccard coefficient (0.074 vs. 0.019) and the qualitative, BNA 274 

based comparison (Jaccard coefficient 0.265 vs. 0.155) (Table 2). In all comparisons the 

Figure 5. Brain regions revealed by contrast between meta-analyses (2-back > rest/ baseline) > (0-back > 
rest/ baseline) (Cmeta) and by meta-analyses across 2-back > 0-back experiments (MCexp). (A) and (D) 
show Cmeta. (B) and (E) show MCexp in red; Cmeta in green; Overlap of MCexp and Cmeta in yellow. (C) 
MCexp. Top row, cortex maps. Axial slices in MNI space. 
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sensitivity is equal to the Jaccard index, since there are no false positives. Thus, the 

specificity is perfect (TNR = 1). 

Table 2. Similarity of brain networks 

Reference-network Contrast-network Whole brain BNA 274 
Jaccard TPR TNR Jaccard TPR TNR 

MCexp: 
2-back > 0-back 

Cmeta: 
(2-back > rest/bsl.) vs. 
(0-back > rest/bsl.) 

0.074 0.074 1 0.265 0.265 1 

Large sample (HCP): 
2-back > 0-back 

Cmeta: 
(2-back > rest/bsl.) vs. 
(0-back > rest/bsl.) 

0.019 0.019 1 0.155 0.155 1 

MCexp: 
2-back > 1-back 

Cmeta:  
(2-back > 0-back) vs. (1-
back > 0-back) 

0.051 0.06 0.999 0.441 0.517 0.98 

MCexp: 
2-back > 1-back 

Cmeta: 
(2-back > rest/bsl.) vs. 
(1-back > rest/bsl.) 

0.001 0.001 1 0.035 0.035 1 

Note: MCexp = Meta-analysis across contrasts on experimental level, Cmeta = Contrast between two meta-

analyses; TPR = True positive rate (sensitivity), TNR = True negative rate (specificity) 

 

Evaluation of contrast baseline/ control conditions 

To investigate the effect of the baseline condition in a meta-analytical contrast 5 meta-

analyses were conducted. A meta-analysis across 2-back > 1-back experiments was 

conducted (MCexp). As in the former approach this contrast should serve as a reference 

contrast for the contrasts between meta-analyses (Cmeta). In this meta-analysis 

significant convergence was found in the left Broca’s area, left SPL, in the left and right 

IPS, at the paracingulate gyrus and in the left and right cerebellum (see Table 3, Figure 6). 

Two different Cmetas were computed, one using experiment 0-back as the control 

condition and one using rest/baseline as the control condition. The first Cmeta was 

computed between the meta-analyses across 2-back > 0-back (19 experiments, 401 

subjects) and across 1-back > 0-back (19 experiments, 404 subjects) and the second 

Cmeta between the meta-analyses across 2-back > rest/baseline (17 experiments, 388 

subjects) and across 1-back > rest/baseline (17 experiments, 389 subjects).  

The contrast analysis comparing the 2-back > rest/ baseline with the 0-back > rest/ 

baseline experiments showed significant stronger convergence in one very small cluster 

in the left cerebellum. 
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In the contrast analysis comparing 2-back > 0-back with 1-back > 0-back experiments, 

significant stronger convergence was found in bilateral SFG (medial area), right MFG 

(dorsal, ventral and ventrolateral area), left MFG (inferior frontal junction), bilateral IFG 

(area 44), left SPL (lateral, intraparietal area), bilateral IPL (rostrodorsal area), left MFG 

(ventral area) and orbitofrontal gyrus (see  Table 3, Figure 6). 

Overlapping cluster with the 2-back > 1-back reference network are in the right FP, left 

IFG (p. Opercularis) and PcG. The 2-back > 1-back reference contrast shows overall a 

stronger parietal involvement and additional significant convergence in the cerebellum. 

Although the clusters of both maps are generally in relative proximity to each other, the 

direct overlap is low (Jaccard-coefficient = 0.051). The computed percent-overlap based 

Figure 6. Brain regions revealed by contrast between meta-analyses (2-back > 0-back) > (1-back > 0-
back) (Cmeta) and by meta-analyses across 2-back > 1-back experiments (MCexp). (A) and (D) show 
MCexp in red; Cmeta in green; Overlap of MCexp and Cmeta in yellow. (B) MCexp. (C) Cmeta. Top row, 
cortex maps. Axial slices in MNI space. 
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on the BNA 274 ROI-wise comparison shows a much higher degree of similarity (Jaccard-

coefficient = 0.441) (Table 2). 

This shows that the two Cmetas differ. While the Cmeta with the versus 0-back 

experiments contains some of the expected areas (i.e. areas of the reference contrast) 

with significantly stronger convergence, these areas are absent in the Cmeta with the 

rest/baseline experiments.  

Table 3. Brain regions involved in 2-back versus 1-back networks revealed by MCexp and Cmetas 

Contrast Cluster 
Voxel 

Local Peaks 
(Macroanatomical 
location) 

Cytoarchitectonic 
Location - Probabilities 
at local maximum (%) 

MNI coordinates z-
score 

 x y z  
MCexp: 
2-back > 1-back  
 

335 L IFG (p. 
Opercularis) / L 
MFG 

Area 45, 16.5 % 
Area 44, 15.5 % 

-48   18   28 4.62 

 L PreCG Area 44, 26.1 % -42    6   30 4.3 
229 L LOC, superior 

division 
Area 7A (SPL), 51.1 % -18  -72   54 4.82 

 L LOC, superior 
division 

Area 7A (SPL), 60.7 % -20  -66   62 3.54 

215 R PcG Area 6mr/ preSMA, 
13.8 % 

2   18   48 4.63 

196 L SFG - -24    0   56 4.75 
 192 R Cerebellum 

(Crus I) 
- 34  -68 -30 4.77 

  R Cerebellum 
Lobule VI 

- 28 -62 -28 4.43 

 170 L Cerebellum 
(Crus I) 

- -32  -64  -34 5.26 

 158 R MFG - 42 26 28 4.94 
 114 L SMG, posterior 

division 
Area hIP1 (IPS), 55.7 % 
Area hIP3 (IPS), 23.5 % 

-34  -50   38 5.42 

 100 R SMG, posterior 
division 

Area hIP1 (IPS), 40.7 % 
Area hIP2 (IPS), 29.8 % 
Area hIP3 (IPS), 29.5 % 

38  -46   40 4.82 

Cmeta: (2-back 
> rest/ bsl.) > 
(1-back > rest/ 
bsl.) 

7 L Cerebellum 
Lobule IV 

- -30 -56 -28 1.76 

Cmeta: (2-back 
> 0-back) > (1-
back > 0-back) 

210 R FL - 42 38 18 2.91 
 R IFG (p. 

Opercularis) 
Area 45, 63.1 % 
Area 44, 16.5 % 

54 22 28 2.28 

108 R PcG - 4 26 44 2.7 
 R SFG - 8 24 48 2.68 

 34 L IFG (p. 
Opercularis) 

Area 45, 15.3 % -50 20 26 2.14 
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 32 L SPL Area hIP3 (IPS), 45.8 % 
Area 7A (SPL), 27.4 % 
Area 7PC (SPL), 25.8 % 

-34 -54 52 2.23 

 16 L MFG - -34   28   22 2.0 
 6 R FL/ R MFG - 38   36   42 1.93 
 3 L OFC - -30   26   -4 1.78 
 3 R ANG Area hIP1 (IPS), 41.2 % 

Area hIP6 (IPS), 6.5% 
40  -54   46 1.71 

 1 R ANG Area hIP1 (IPS), 41.1 % 42 -54 40 1.7 
Note: MCexp = Meta-analysis across contrasts on experimental level, Cmeta = Contrast between two meta-

analyses;  L = left hemisphere, R = right hemisphere; Cytoarchitectonic areas:  Area 44 and Area 45 (K. 

Amunts et al., 1999; Katrin Amunts et al., 2004); Area 7P (SPL) and Area 7A (SPL) (Scheperjans, Eickhoff, 

et al., 2008; Scheperjans, Hermann, et al., 2008); Area hIP1 (IPS) and Area hIP2 (IPS) (Choi et al., 2006);  

Area hIP3 (IPS) (Scheperjans, Eickhoff, et al., 2008; Scheperjans, Hermann, et al., 2008); Area 6mr / 

preSMA (Ruan et al., 2018). 

 

Evaluation of power in meta-analytical contrasts 

To investigate the influence of sample size (i.e. the number of experiments per Cmeta) on 

the validity of a Cmeta and to verify the previous results, a meta-analysis was simulated 

using a large sample of subject level contrasts. 8 variations with increasing sample size K 

(number of studies) were computed and for every variation 100 iterations were 

calculated. The Cmeta of each iteration was compared with the MCexp within iteration 

(simulated MCexp) and to the literature derived 2-back > 0-back reference network 

(literature MCexp). 

The following comments on the results are mainly focused on the ROI-wise (based on 

BNA274) comparisons, as the voxel-wise (whole brain) comparisons are generally lower 

but show the same trend (depicted in Figure 7 (dashed line) for the sake of completeness). 

Unless explicitly noted, reported effects refer to ROI-wise comparisons. 

Comparison of Cmeta with MCexp (within iteration) 

The ROI-wise computed Jaccard coefficient (mean across iterations) between Cmeta and 

MCexp increases with an increase of K (Figure 7 in blue, solid line). A one-way ANOVA 

shows that this increase is overall significant, (F(7, 792) = 82.145, p = 2.2e-16). Post-hoc 

tests revealed significant increases of similarities (p < 0.05) with an increase of 6 studies 

(K to K+6, i.e. significant increases from 17-23, 20-26, 23-29, 26-32, 29-35, 32-38). The 

greatest degree of percent-overlap can be observed at K = 38 (Jaccard-coefficient = 0.575 

± 0.033). 
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The sensitivity increases, analogous to the Jaccard coefficient, with an increase of K (from 

0.602 ± 0.061 at K = 17 to 0.714 ± 0.043 at K = 38). A one-way ANOVA shows a significant 

effect of sample size on measured sensitivity (F(7, 792) = 62.162, p = 2.2e-16). Post-hoc 

tests revealed significant increases in sensitivity (p < 0.05) again with an increase of 6 

studies (as seen above). 

The specificity index on the other hand decreases from 0.901 at K = 17 to 0.85 at K = 38. 

Again, one-way ANOVA shows that the effect is significant (F(7, 792) = 42.222, p = 2.2e-

16). In contrast to Jaccard coefficient and sensitivity, post-hoc tests revealed significant 

decreases of specificity (p < 0.05) for the first increases in studies (K), but not between K 

= 29 and any higher K (i.e. significant decreases from 17-20, 20-26, 23-26, 26-38). 

Noteworthy, voxel-wise measured specificity is almost perfect (= 1) and showing almost 

no decrease between K = 17 to K = 38 (0.995 to 0.992). 

Thus, an increase in K goes along with more regions being correctly but also falsely 

identified as significant in the Cmeta. However, overall the increase in discovering correct 

regions seems to outweigh the false discoveries (see Figure 7).  

Figure 7. Meta-analytical contrast simulation using a large sample. 
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Comparison of Cmeta with literature MCexp 

The measured similarity between the Cmeta and the literature MCexp shows a similar 

pattern but overall to a slightly lower degree (Figure 7 in orange, solid line). A one-way 

ANOVA show overall a significant effect of increasing sample size (K) on the Jaccard-

coefficient (F(7, 792) = 30.724, p = 2.2e-16). Post-hoc tests revealed significant increases 

of similarity (p < 0.05) only between the first increases in studies (i.e. significant increases 

from 17-20, 20-26, 23-32). The Jaccard coefficient does not significantly increase between 

26 and any higher K, instead it reaches the maximum in similarity at 35 studies (Jaccard-

coefficient = 0.503 ± 0.031).  

The sensitivity significantly increases (ANOVA: F(7,792) = 200.92, p = 2.2e-16) and 

specificity significantly decreases (ANOVA: F(7,792) = 179.41, p = 2.2e-16). Interestingly, 

both seems to happen at a rate twice as strong compared to the comparison between 

Cmeta and simulated MCexp (within iteration). The sensitivity increases between K = 17 

and K = 38 from 0.539 to 0.738 and the specificity decreases from 0.901 to 0.795. 

Voxel-wise computed specificity is, as in the comparison to the simulated Cmeta, close to 

1, with a very small decrease between K = 17 to K = 38 (0.995 to 0.986). 

This indicates that as before an increase in K seems to result in more regions correctly 

being identified while simultaneously identifying more regions not present in the 

reference network (see Figure 7 in orange, solid line). 
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Discussion 

The aim of this study was to assess the validity and robustness of meta-analytical 

contrasts. This was done by comparing a meta-analysis across contrasts on experimental 

level (MCexp) with a contrast between two meta-analyses (Cmeta), both of which 

represent the same contrast but are calculated conceptually differently. Next, the 

influence of the contrast condition in a meta-analytical contrast was examined using the 

same literature dataset but focusing on a different set of contrasts. Finally, a large dataset 

was used to simulate differently powered meta-analyses and analyzing the validity as a 

dependency of number of experiments. 

Reference networks: Meta-analysis across contrasts and large-sample n-

back contrast 

The meta-analysis across 2-back > 0-back experiments (MCexp) shows significant 

convergence bilaterally in frontal and parietal regions. Those regions are in good 

accordance with previous WM meta-analytical networks (Owen et al., 2005; Rottschy et 

al., 2012). However, clusters of the MCexp are slightly smaller compared to  the main 

effect analysis across all WM-tasks by Rottschy and colleagues (2012). A larger sample 

size (189 vs. 62 experiments) and a more heterogenous sample including a variety of 

contrasts and WM paradigms, in the WM network, might have led to this difference. In 

comparison with n-back meta-analysis by Owen et al. (2005), misses the MCexp the right 

hemispheric pole region. This could likewise be explained by the homogenous sample 

comparing only the 2-back with the 0-back condition and including mainly verbal 

paradigms (> 80 %). However, the left-hemispheric lateralization of verbal WM is a 

debated topic, as the results of a current meta-analysis show (Emch et al., 2019). 

The 2-back > 0-back contrast using 435 subject level GLM contrasts shows a similar 

fronto-parietal pattern of activations as described in the meta-analytical network but is 

larger in extension. The regions remain mostly the same, with an addition of more frontal 

involvement, ranging across the MFG. This difference possibly originates from the 

different samples. The meta-analytical network shows convergence of activations across 

different groups with slight differences in task designs, pre-processing, analysis and 

scanning protocol, site. The HCP sample is large but all subjects (age = 22-35) performed 

the same task, image acquisition and processing/ analysis of data were all standardized 

(Barch et al., 2013; Glasser et al., 2013; Van Essen et al., 2013). This more homogenous 
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sample is likely to be the cause for the observed stronger and more extended effects of 

the contrast. 

Meta-analytical contrast evaluation 

The whole brain measured Jaccard coefficients between the Cmeta ((2-back > rest/bsl. > 

(0-back > rest/ bsl.)) and the MCexp and large-sample n-back contrast show a very low 

degree of similarity (see Table 2). Based on this voxel-wise measure, one could assume 

that the networks are completely different, the Cmeta not matching the references. 

The Jaccard coefficient is commonly used as a reliability metric in fMRI studies  to 

measure the spatial overlap of two whole brain maps (e.g. Kampa et al., 2020; Turner et 

al., 2018). The coefficient is calculated as a voxel-wise comparison of two thresholded 

maps. However, this makes the metric dependent on a predefined statistical threshold 

(Bennett & Miller, 2010). A possibly confounding effect might occur, if the proportion of 

sign. voxels in both maps differ (Bossier et al., 2020). For example, if two clusters overlap, 

but in one map the cluster consists of much fewer significant voxels, we would still see a 

relatively low Jaccard coefficient. In the comparisons performed here, a large difference 

in the proportion of the number of significant voxels can be seen. Compared to the MCexp 

network, the Cmeta has 13 times fewer sign. voxels, and compared to the large-sample 

network, even fewer. However, for the evaluation conducted here, it is not necessarily of 

interest if every voxel is detected but whether a region is found or not. 

In contrast to the voxel-wise measured similarity, a descriptive comparison of cluster 

locations indicates some accordance between the Cmeta and its reference networks. In 

the Cmeta significant stronger convergence forming 7 clusters (with 2 consisting of only 

3 and 1 voxels) can be observed. All of those clusters lay within or show great overlap to 

5 of the 15 clusters of the MCexp. It is striking that the clusters formed in the Cmeta are 

much smaller than the ones seen in the MCexp. Overlap of both networks can be found in 

the posterior part of the left SMG (hIP1, hIP2), the right angular gyrus (hIP1), anterior INS 

(bilateral)/ posterior OFC, right SFG (dorsolateral area 6)/MFG (ventrolateral area 6). 

However, 10 of the MCexp clusters seem to not be replicated in the Cmeta. The clusters 

unique to the MCexp include 4 bilateral cerebellar cluster, a cluster spanning between 

paracingulate gyrus and (pre-) SMA, right Area 45, left SPL, left frontal pole (FL) and left 

caudate and thalamus. The differences to the large-sample contrast are similar. With the 

difference that generally a larger part of the brain in the large-sample contrast shows 

significance compared to the MCexp reference. 
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To quantify these observed differences and similarities, a comparison was made based on 

a ROI-wise approach. ROIs are defined by the BNA 274 parcellation (Fan et al., 2016) and 

declared significant if only one voxel is suprathreshold. This is similar to a cluster-wise 

comparison by Durnez et al. (2014) declaring a cluster to be replicated if at least one sign. 

voxel is overlapping between images. To make the approach relatively independent of the 

number and extent of clusters a ROI-wise approach as opposed to a cluster-wise 

comparison was introduced.  The ROI-wise comparison shows a higher degree of overlap 

between the Cmeta and the reference networks. The measured ROI-wise Jaccard 

coefficient shows that ca. 27 % of the regions that are significant in the MCexp are also 

significant in the Cmeta. This includes 22 common regions and 61 regions unique to the 

MCexp. No regions are unique to the Cmeta (specificity is perfect). The unique regions are 

similar to the above described cluster locations, including bilateral cerebellar, left 

thalamus and generally more frontal regions (bilateral IFG, SFG, right frontal pole). The 

comparison to the large-sample contrast shows generally similar results, though a lower 

degree of similarity, which can be due to the greater difference in network extent, leading 

to more regions to be found significant by the ROI-wise measure. 

Overall, two common observations can be made from the comparisons. First, all clusters 

showing significant stronger convergence in the Cmeta are represented in the reference 

networks. Second, regional differences persist, a considerable amount of brain areas 

remain undiscovered in the Cmeta. Further, the Cmeta shows considerably smaller 

clusters compared to the MCexp. 

These observations show that the brain regions that show significant stronger 

convergence in the 2-back > rest/ baseline experiments compared to the 0-back > rest/ 

baseline experiments are associated with working memory (as observed by the large 

sample contrast on a study level). Those differences can be interpreted as stronger 

involvement in one condition (2-back) compared to another condition (0-back), but they 

seem to represent only a fraction of the brain regions associated with the contrast. Thus, 

a Cmeta possibly shows only regions which show no (or very low) convergence in the 0-

back condition. In contrast to the MCexp which can also reflect smaller differences in the 

2-back against 0-back contrast. 
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Influence of type of contrasting condition 

Do Cmeta and MCexp differ dependent on the choice of contrasting condition? To 

systematically investigate the influence of the contrasting condition on a Cmeta, a second 

set of meta-analyses was calculated. 

The first Cmeta was computed across experiments contrasting against a passive rest/ 

baseline condition, (2-back > rest/ baseline) vs. (1-back > rest/ baseline). A second Cmeta 

was computed across experiments contrasting against an active control (0-back) 

condition, (2-back > 0-back) vs. (1-back > 0-back). 

The reference network was computed as a MCexp across all experiments reporting the 2-

back > 1-back contrast. The 2-back > 1-back meta-analysis, which represents a working 

memory load effect (Rottschy et al., 2012), shows significant convergence in a similar, 

though less pronounced fronto-parietal network as the main effect of the 2-back > 0-back 

meta-analysis. This meta-analytical WM load network is in accordance with previous 

meta-analyses (Emch et al., 2019; Rottschy et al., 2012). In both previous WM load 

networks, a more distinct pattern of regions was observed, including more frontal 

regions. A possible explanation for this weaker 2-back > 1-back network might be the 

homogenous sample and the relative low sample. Both former studies used a more 

heterogenous sample of contrasts, including different WM paradigms (i.e. Sternberg, n-

back) and different load contrasts (e.g. 3-back > 1-back, modulation by load). In the case 

Rottschy et al. (2012) the sample was also considerably larger (n = 44). Thereby smaller 

effects might have been revealed in the former but might not be evident in the meta-

analysis across 2-back > 1-back. 

Due to the reasons stated above, only the ROI-wise comparisons are discussed. 

As only on small cerebellar cluster is showing significant stronger convergence in the 

Cmeta across rest/ baseline experiments, the measured similarities are all low. On the 

other hand, the Cmeta across control condition experiments shows a rather high degree 

of similarity with the reference network (Jaccard-coefficient = 0.441). This is also higher 

than similarity observed in the first meta-analytical contrast evaluation (compare Table 

2). 

The high degree of sensitivity (TPR = 0.517) of the Cmeta across control conditions comes 

with a decrease of specificity slightly below 1. This becomes evident through a descriptive 

comparison. A cluster in the left MFG (ventral area) and a cluster in the left OFG seem to 
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be uniquely identified in the Cmeta. It should be further noted, that most clusters are not 

truly overlapping between maps but are in relatively proximity to each other. It therefore 

seems that the choice of contrasting condition directly effects Cmetas. 

Early studies highlighted the implications that different contrasting conditions entail 

(Price et al., 1997; Raichle, 1998) and found resting-state measurements to be a 

suboptimal baseline condition as it potentially alters the activity during the task condition 

(Stark & Squire, 2001). A meta-analysis by Price et al. (2005) supports those findings, 

showing that a contrast with a high-level baseline has a higher sensitivity to the cognitive 

processes of interest compared to a low-level baseline contrast. Those findings fit nicely 

with the here presented results. High-level contrasts (in this case 0-back) might provide 

generally higher sensitivity and thus show more convergence across experiments on a 

meta-analytical level. However, it is important to emphasize that this does not necessarily 

imply that the effect of interest is generally not observable in meta-analyses across low-

level baseline experiments. But might rather suggest that an effect was too weak to be 

captured by the Cmeta (across rest/ baseline experiments). 

The observed reduced specificity in the Cmeta across control experiments may be due to 

two reasons. First, the Cmeta might show significant stronger convergence in regions not 

associated with the contrasted cognitive processes (i.e. false positives). However, this 

seems to be relatively unlikely as all identified regions are within previously reported WM 

load effect networks (Emch et al., 2019; Rottschy et al., 2012). Second, the MCexp 

reference network might miss some of the regions associated with the process of interest 

(i.e. be incomplete). This is possibly because the sample is too small (N = 20) not showing 

convergence in all regions associated with WM load. Further, some studies reported the 

2-back > 1-back contrast to be not significant, which potentially indicates a generally 

unreliable contrast at study level (Esteves et al., 2018; Migo et al., 2015; Sapara et al., 

2014). 

Overall, these findings suggest that the contrasting conditions in experiments seem to 

have a big influence on the results of a contrast between two meta-analyses. That is, 

experiments with a contrast against a rest/ baseline condition seem to represent the 

process of interest to a weaker degree compared to experiments against a more active 

control condition. Thus, potentially confounding meta-analytical results by showing 

no/low convergence in relevant areas. Further investigations are highly advisable as this 

might be a source of strong bias when performing a Cmeta. 
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Are experiments contrasting vs. rest suited for a CBMA? 

Contrasts versus a resting state/ baseline condition should generally show more 

activations as the same contrast versus a control condition (Barch et al., 2013). This is due 

to the inherent subtraction logic of contrast analysis (Price et al., 1997). 

Therefore unexpected was the observed size of the 2-back > rest/ baseline meta-

analytical network, which is smaller than the 2-back > 0-back network (compare 

Supplementary Figure 1 and Figure 3). Working memory processes are theoretically 

isolated by contrasting the 2-back versus the 0-back condition (Barch et al., 2013; Miller 

et al., 2009).  Thus, the 2-back > 0-back network should show only the regions involved in 

working memory. It would be expected, that the 2-back > rest/baseline network includes 

all those regions and additionally with low-level task demand associated regions (i.e. 

motor, visual, attention). In contrast to these expectations, the meta-analysis across 2-

back > rest/ baseline experiments shows only significant convergence in regions within 

the 2-back > 0-back reference network and not beyond. 

A first explanation for this might be the issue of power (N = 31 vs. N = 62). However, this 

does not seem to be the case, as shown by the results of a second version of the meta-

analysis across 2-back > 0-back experiments with a reduced sample size (compare 

Supplementary Figure 3). This reduced version when compared to the full sample 

network, shows a very similar pattern of significant convergence with generally slightly 

smaller clusters. It only misses a small left parietal and the thalamus clusters. It however 

is still clearly bigger and shows more regional convergence compared to the 2-back > rest 

network. 

These observations, together with the results from the Cmeta contrasting condition 

investigation, lead to the general question if contrasts against a fixation/ rest condition 

are suited for a coordinate based meta-analysis (CBMA). In this specific case, if ALE meta-

analysis is suited to accurately capture the entirety of the cognitive processes involved in 

the here investigated contrasts. 

Coordinate-based meta-analyses are known for a loss of information and not capturing 

smaller effect sizes (Salimi-Khorshidi et al., 2009).  The basis of a CBMA are the reported 

foci or peak coordinates of clusters in published studies. The coordinates are serving as a 

proxy for the location of the found activation differences. Their high availability is what 

makes CBMA so attractive but using only the coordinates comes with some costs. 
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Information about the cluster size (extent, covered locations) and z-score are not included 

in the ALE algorithm (Eickhoff et al., 2009). Usually 10 foci are reported per experiment 

(median of 161 peer-reviewed experiments from the here used n-back dataset). The 

number of coordinates reported per cluster are usually between 1-3. 

This loss of information may be a problem in some cases. This might be in the case in 

contrasts versus a rest/ fixation baseline, especially higher cognitive contrasts (e.g. 2-

back > fixation) and in studies with a large sample size. In both cases, the clusters become 

larger. For contrasts with a vs. rest control condition, because multiple processes are 

covered by the contrast. With larger sample, clusters also become larger as additional 

smaller effects are revealed. Larger clusters may eventually merge. In the most extreme 

case, only one large contiguous cluster can then be observed (Bossier et al., 2020). An 

example of a contrast where only one large cluster was observed in a relatively large 

sample is by Aguilar-Ortiz and colleagues (2020). They found a large contiguous cluster 

of 115980 voxels in a sample of N = 67 for the contrast 2-back > 1-back. Another example 

of a contrast against a rest/fixation baseline in which only a single cluster was observed 

in a smaller sample (N = 26) is from Rodríguez-Cano and colleagues (2017). They found a 

large contiguous cluster with the size of 71142 voxels for the contrast 2-back > baseline. 

These large clusters are clearly insufficiently described by a single coordinate. 

The problem of large clusters also occurred in the sent contrasts. In the results kindly 

provided by Prof. Dr. Jacob Lahr and Dr. Lora Minkova (Lahr et al., 2018), single large 

clusters per contrast can be observed. Two other examples of 2-back > rest/fixation 

contrasts where large clusters can be observed are those kindly provided by Dr. Ian 

Harding (Harding et al., 2016) and Dr. Yu Fukuda (Fukuda et al., 2019). In one case, only 

two large clusters are observed with 43803 and 4291 voxels with a sample size of N = 34. 

In the other case, among others, a large cluster with 55711 voxels is found (N = 24). If only 

the first 3 peak coordinates of such large clusters are included in the meta-analysis, 

probably only a fraction of the real effects are covered. From the received results, the first 

10 peaks per cluster were extracted if possible. This was possible if image files were 

provided. The standard local maxima output table of SPM, however, reports only 3 peaks 

per cluster. But even 10 peaks are probably not sufficient to include everything in 

consideration of such large clusters. 

The observations might imply that some contrasts may not be ideal for an ALE meta-

analysis. In the meta-analytical contrast studied here, this may have resulted in a bias. 
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More studies alone are not enough for a robust meta-analytical contrast 

To what extent is the validity of Cmetas driven by the number of experiments? To assess 

this question large-sample-simulated meta-analyses were conducted. 

As observed in the literature-based meta-analysis, the ROI-wise calculated similarities 

show considerably better results compared to the voxel-wise measures. For the reasons 

discussed above, a ROI-wise metric might be the preferred choice to assess the similarity 

between Cmeta and reference networks, as it is predominantly of interest whether 

regions are found. Therefore, mainly the results of this approach will be discussed. 

The comparison of the Cmeta with the MCexp within the same iteration (i.e. both 

computed from the same set of studies) seem to generally show a higher degree of 

similarity as the comparison with the literature MCexp (compare Figure 7). This might be 

due to an increase of power in the MCexp with an increase in included studies (K). Higher 

powered meta-analyses might detect smaller/ medium sized effects (Eickhoff et al., 2016) 

and lead to more and larger cluster, which will lead to more associated ROIs with an 

increase of K. 

In general, there is an increase with the number of K in similarity (measured by Jaccard-

coefficient) and sensitivity and a decrease of specificity. Though, even a relatively high 

power (K = 38) seems to not capture the full network as seen in the reference contrasts. 

The maximum reached similarity is 0.575 (at K = 38, Cmeta vs. within MCexp). The highest 

observed sensitivity is 0.738 (at K = 38, Cmeta vs. literature MCexp). Thus, even 

computing a contrast between two very robust meta-analyses (38 experiments each), 

approximately 26 % of all relevant regions are still not detected and 15-20 % are falsely 

identified (as indicated by specificity of 0.795 and 0.85 at K = 38). 

While increasing the sample size is shown to be one solution to replicability in task fMRI 

group-level contrasts (Bossier et al., 2020; Cremers et al., 2017; Geuter et al., 2018), it 

seems that an increase in sample size is only showing a relatively moderate positive effect 

on the validity of Cmetas. Thus, it seems to be not the only factor towards robust Cmetas. 

Further considerations and potential confounds are in detail discussed in the next 

chapters. 

How many experiments are recommendable for a Cmeta? 

Generally, conducting meta-analyses follows the wisdom “take what you get”, i.e. 

including all available experiments. However, it is important to know whether a particular 
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hypothesis should be tested based on the available sample (Müller et al., 2018). So, 

whether one should calculate a Cmeta if the available number of experiments is relatively 

small; or whether it would be better to loosen the inclusion criteria to increase power; or 

whether a very high number of experiments could possibly introduce errors. 

The results of the large-sample-simulated meta-analysis suggest that there is a trade of 

between sensitivity and specificity. The comparison to the literature reference network 

shows no significant increase in similarity from 26 to any higher K. It seems to be the 

balance point where sensitivity and specificity increase and decrease at approximately 

similar rates. 

The decrease in specificity shows an inflation of false positives. A way to control them 

could be to correct the Cmeta results (results here a uncorrected) (Eickhoff et al., 2011; 

Laird, Fox, et al., 2005). However, Cmeta correction might also come with a decrease in 

sensitivity. Although this study cannot make any assumptions on this, it might improve 

the problem. 

Whole brain, voxel-wise comparisons of the Cmeta with reference networks shows nearly 

perfect specificity (compare Figure 7). This might indicate that the observed specificity 

decrease is a problem introduced through the ROI-wise assessment of regional overlap. 

Thus, a verification of the current method and exploration of other methods should be 

performed. 

A higher number of experiments goes along with a higher sensitivity. However, it is 

important to considerate that larger samples also increase the likelihood of false 

positives. That said, if strong confidence in the results is essential than a sample of 26 

experiments should not be exceeded by too much. If including more experiments, it is 

advisable to use a more conservative threshold (i.e. p-value) or possibly correct for 

multiple comparisons. 

Which effects can be shown in a Cmeta? 

The Cmeta is computed as a statistical comparison of two meta-analyses. And the ALE 

maps of those meta-analyses are computed on the basis of peak activation coordinates. 

Thus, a Cmeta is a comparison of activations. However, a contrast from individual fMRI 

studies is usually computed between activations and deactivations. A contrast (e.g. 2-back 

> 0-back) can be masked with the relevant main effect (e.g. 2-back) to ensure that regions 

with relative deactivations in one condition (e.g. 0-back) and no activations in the other 
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condition (e.g. 2-back) don’t lead to positive results (Schlösser et al., 2007). Assumed that 

this masking procedure is rarely done (not reported once in the literature sample), it is 

possible that some regions showing convergence in the literature MCexp network are due 

to deactivations in the control task. However, the Cmeta will not show significant stronger 

convergence in those regions, as deactivations are not included, and those regions are not 

showing activations in the condition of interest. Thus, some measured false negatives in 

the Cmeta might actually not be false. To ensure that the reference network is only 

showing convergence across “real” activations only masked contrasts should be fed in the 

meta-analysis. 

How strong needs a difference in convergence be, in order to be found significant?  

The individual 2-back > rest/ bsl. and 0-back > rest/bsl. meta-analyses (from the first the 

meta-analytical contrast investigation) both show convergence in the bilateral aINS and 

(pre-)SMA (see Supplementary Figure 1). This is expected as both regions have been 

associated with WM (Rottschy et al., 2012) and attention (Langner & Eickhoff, 2013). 

Interestingly, the Cmeta between both meta-analyses finds significant stronger 

convergence in the aINS but not in the bilateral (pre-)SMA, while both areas show 

convergence in the MCexp reference network. The significantly stronger convergence in 

the aINS shows that the Cmeta is able to find a difference in convergence even in regions 

that show convergence in both meta-analyses. This is in line with observation that can be 

made in the Cmeta between task-set versus task-load effects by Rottschy et al. (2012). The 

meta-analysis shows significant stronger convergence in load effects in frontal areas that 

are also significant in a conjunction analysis between both meta-analyses. However, the 

absence of the (pre-)SMA raises the question of how strong a difference in convergence 

must be in order to be identified? 

The first example illustrates the conceptual differences between Cmeta and MCexp and 

raises the question if perfect sensitivity is theoretically possible or whether the two 

contrasts are different after all. The second case shows that a Cmeta is potentially able to 

detect differences in convergence, even if this region is in both meta-analyses significant. 

General discussion 

A Cmeta is not a substitute for contrasts on experimental level because not all relevant 

brain regions are identified. The preferred choice should always be to perform a MCexp. 

In cases where this is not feasible due to a limited number of studies, Cmetas are still 
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informative as the regions identified are most likely true positives. Nevertheless, it should 

be kept in mind that never all regions are identified, i.e. the absence of regions in Cmetas 

should be interpreted cautiously or omitted. 

There are a number of possible reasons why not all regions are found. It may be a problem 

at the level of individual experiments, but also on the meta-analytical level. Regarding the 

former a problem might be the coordinates that are fed into the meta-analysis, the 

contrasted conditions, (no) correction for multiple comparisons, the number of 

coordinates reported, and the number of subjects per experiment. Another possibility is 

that the problem arises at the meta-analytical level. For example, the number of 

experiments per meta-analysis or possibly an imbalanced design could lead to a bias. 

Moreover, in the calculation, the Cmeta is masked with the meta-analysis main effect and 

not corrected for multiple comparison. 

Potential problems on the experimental level 

Higher level contrasts versus a fixation baseline may not be ideal for a neuroimaging 

meta-analysis. This is also true for large sample contrasts. As discussed, the problem could 

be a merging of clusters, resulting in larger and fewer clusters that may not be adequately 

described by peak coordinates (foci). To conclude, if the meta-analyses cannot detect all 

relevant regions due to inaccurate / too little information in the coordinates (as evidenced 

by smaller networks), then the Cmeta certainly cannot. 

Related to this, the choice of a threshold for group-level maps and whether to correct for 

multiple comparisons affects the number and size of clusters (Bossier et al., 2020) and 

thus indirectly affects the coordinates reported. While corrected results might provide 

smaller cluster, uncorrected results might provide more cluster. However, in a scenario 

where all peaks are reported, uncorrected results might be more advantageous. That is, 

because the ALE algorithm eventually separates random occurring clustering (across 

experiments) from significant convergence (Eickhoff et al., 2009). In addition, the choice 

of the number of peak coordinates extracted can also be a critical factor. If only the first 3 

peak coordinates of every cluster are extracted, it is likely that big cluster with multiple 

subpeaks will be inadequately represented. 

As the potential influence of those factors ((un)corrected sample size, number of 

extracted peak coordinates and number of subjects per study) on the Cmeta results is still 

unknown, a systemic investigation is advisable. 
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Potential problems on the meta-analytical level 

A central limitation to all the literature-based assessments was sample size. While above 

the for meta-analyses recommended 17-20 experiments (Eickhoff et al., 2016), the 

individual samples might still be not sufficiently large to get robust findings. The fact that 

many regions are not detected in the Cmeta that show significant convergence in MCexp 

suggests a power problem. The results of the large-sample-simulation meta-analysis 

partially contradict these assumptions. There is a positive effect of power on the number 

of regions detected in the Cmeta, but this is relatively weak and only partially explains the 

differences to the MCexp. 

Another important aspect concerns unequal sample sizes. As seen in the current study, 

the number of experiments can vary widely. When calculating a contrast between two 

very unequal meta-analyses, this could introduce another potential bias. The chosen 

method to reduce the number of experiments of the meta-analysis with the higher 

number by matching the number of experiments manually could be prone to subjective 

error and may not be the ideal approach. Therefore, a subsampling method might be 

better to correct for the effect of unequal samples (Gu et al., 2019; Poudel et al., 2020). 

Masking and multiple comparison correction in meta-analytical contrast 

Besides possible confounds caused by the extracted coordinates or the study design, the 

calculation of the Cmeta may be biased. 

After calculating the contrast between two ALE meta-analyses, it is masked with the result 

of the corresponding main effect analysis (Eickhoff et al., 2011). In the contrast analysis 

between the 2-back > rest/baseline and 0-back > rest/baseline meta-analyses, the 

calculated contrast map was masked with the results of the 2-back > rest/baseline main 

effect analysis. In this case, only one-sided, because only the 2-back > 0-back (not 0-back 

> 2-back) contrast was of interest. This is similar to masking in individual fMRI studies 

(Schlösser et al., 2007), where a contrast is masked with the main effect to facilitate 

interpretation and to obtain only differences that generally show convergence in the 

respective condition (as described above in detail). However, it could be investigated if 

this step is necessary or could be omitted, to include more potential regions.  

Correction of multiple comparisons is necessary when a statistical test is repeated several 

times, thereby increasing the probability of a false positive result (type I error) (Shaffer, 

1995). The results of the literature-based Cmeta do not show false positives, but rather a 
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problem of false negatives. This seems more likely to be due to insufficient power to 

identify all effects. In the case of the meta-analysis simulated with the large data set, there 

are significantly fewer false negatives, but an increase in false positives with an increase 

in power. This suggests that testing for multiple comparisons is likely to be useful, at least 

above a certain number of experiments. 

Limitations 

While the simulated approach can be controlled for a lot of influences it might help to 

uncover the importance of single factors on Cmetas. This means the results are likely to 

show high internal validity (Onwuegbuzie, 2000). This comes at the expanse that it is 

unclear how realistic and generalizable the results are for other, literature-based meta-

analyses. Due to this low external validity, the implications made from this approach 

should be critically weighed. The literature (traditional) meta-analysis approach is based 

on a heterogenous sample of studies. Therefore, the external validity can be regarded 

relatively high. However due to the limitation in availability of data it remains unclear to 

what extent single factors might have influenced the results (low internal validity). 

An ALE meta-analysis is limited by the existing literature. This was particularly evident in 

the varying number of experiments found for each contrast. There may be some 

publication bias associated with the literature (Acar et al., 2018), which, as mentioned 

earlier, might manifest itself more strongly for certain contrasts. The available literature 

results were extended by several authors who contributed their additional results upon 

request. However, this also means that the results are not peer-reviewed, leading to 

another possible confound (Müller et al., 2018). 

The resulting dataset remained suboptimal in two aspects. It contained only the just 

recommended number of experiments (17-20) for some meta-analyses and all three COIs 

(condition A > condition B; condition A > baseline; condition B > baseline) were only 

available for some studies. For the 2-back > 0-back comparison, all three 

experiments/contrasts of interest (0-back > rest; 2-back > rest; 2-back > 0-back) were 

retrieved for only 10 subject groups. This restricts the comparison to between-studies 

effects instead of comparing within-studies effects. 

The large-sample-simulated meta-analysis approach is limited in various ways. Firstly, in 

its attempt to create a realistic scenario of an actual CBMA. Some factors were varied 

while others were fixed. Only one analysis pipeline was used, opposed to the analytical 
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flexibility observed in the literature (Carp, 2012). The used HCP sample (Van Essen et al., 

2013) is very homogenous in terms of subject age, scanner protocol and overall of high 

quality, thereby not necessarily reflecting a typical fMRI study. Some variability was 

introduced by drawing differently sized studies and varying the group map thresholding/ 

correction method. However, this could also have biased the results, as discussed 

previously. 

Both approaches are based on the same principle, a contrast comparison of one specific 

cognitive task contrast. It remains open how universal potential findings are, in respect 

to other contrasts (e.g. other tasks, groups etc.). 

Lastly, all discussed results are based on the measure of similarity. The here proposed 

qualitative assessment using a ROI-wise comparison is based on no threshold. This very 

liberal decision, declaring parcels as significant by just 1 voxel, might have inflated false 

declarations. This could be addressed by choosing a threshold (i.e. a minimum of N voxels 

or a minimum of X percent of voxels found to be significant). This was not done to no run 

into the same problem discussed prior, a similarity difference based on the cluster extent. 

Further, any chosen threshold would be arbitrary. In order not to eventually cancel out 

true effects, no threshold was chosen, to the cost that this may falsely label regions as 

significant. A further important consideration for this similarity measure is the 

classification of ROIs. Using a parcellation, it is crucial to assume that the ROIs are 

representing meaningful brain areas. Therefore the Brainnetome Atlas was chosen, 

representing parcels based on known anatomical and functional connections (Fan et al., 

2016). It is clearly essential to have a valid tool of assessing similarities. Therefore, is a 

validation of the measure and exploration of further metrics highly advisable. 

Outlook 

As described in detail in the “General discussion” section, there are many potential 

sources of confounds for a meta-analytical contrast. Several investigations are necessary 

to rule them out and to give a more thorough recommendation for the use of Cmetas. 

To confirm the results of the literature-based analysis, a "complete" literature sample (i.e. 

all 3 contrasts for at least 20 studies) would be needed. This would change the comparison 

from between-study effects to within-study effects. In addition, other cognitive tasks and 

possibly group activation differences could be compared on a meta-analytical level. This 

is important to rule out the possibility that the chosen contrast was not suitable or that 
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certain contrasts (higher cognitive functions versus rest baseline) are generally 

unsuitable for CBMA. 

In the light of the large-sample-simulated meta-analysis, further research should be 

conducted to test different properties. At the study level, the influence of the chosen 

threshold method and the influence of the number of coordinates remained unclear. 

Variations with only one threshold method (corrected vs. uncorrected) and selecting all 

coordinates or only the first 3 peak coordinates could provide further insights. Also, the 

effect of unequal sample sizes in the experiments seemed to play a crucial role in 

understanding Cmetas. Variations of study samples using only a steady number of 

subjects per study could help to investigate this factor. Eventually, all comparisons should 

be replicated in different samples and with different tasks to validate the results. 

Another insightful investigation would test the influence of deactivations on Cmetas. The 

same large-sample-simulated meta-analysis approach could be used, but with a slightly 

different reference MCexp. Instead of extracting the coordinates directly from the 2-back 

> 0-back group analyses, they could be masked beforehand with the 2-back > fixation 

contrast. This would ensure that any positive effects observed in the 2-back > 0-back 

contrasts were due to activation differences and not deactivations in the 0-back condition. 

Finally, the current algorithm should be re-evaluated and finally optimized. A subsampled 

Cmeta calculation should be investigated to test the effect of imbalanced designs. The 

effect of masking and lack of multiple comparison correction in Cmetas remains unclear 

and further investigation would clearly be advisable. 

Conclusion 

The results indicate that although a contrast between two meta-analyses cannot 

necessarily identify all regions, the regions found can be interpreted with relative 

confidence similar to regions found in a meta-analysis across experiments on 

experimental level (i.e. probability of a false positive is low). However, it is not 

recommended to interpret the absence of regions, because of the observed low sensitivity. 

Experiments contrasting against rest/ baseline condition seem to be less suitable than 

experiments contrasting against control condition, i.e. the results recommend using a 

high-level control if possible. 
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Finally, an increase in the number of cases is associated with a better sensitivity and 

similarity, but it seems that from a number of 26 experiments onward this increase is 

reduced with a higher likelihood of seeing false positives. 
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Supplementary data 

Overview of literature dataset 
Supplementary Table 1. Overview of experiments included in the different meta-analyses. 

Study Contrasts (i.e. 
experiments) 

Subjects 
(female) 

Age (± SD) Smoothing 
(FWHM) 

Correction Modality Stimuli Used in contrast analysis 

Aguilar-Ortiz et al. 2019 2-back > baseline 67 (64) 32.5 ± 9.68  cFWE p < 0.05 visual letter (2-back > rest/ bsl.) > (1-back > rest/ bsl.) 
 2-back > 1-back        
 1-back > baseline       

Aguirre et al. 2019* 2-back > 0-back 29 (14) 32.72 8 cFWE p < 0.05 visual letter  
Alain et al. 2010 2-back > 1-back 12 (7) 26.33 ± 2.9 6 FWE p < 0.05 auditory sound  
Alain et al. 2018 2-back > 1-back 41 (25) 25.05 6  visual/ 

auditory 
  

Allen et al. 2006 2-back > 0-back 10 (2)  7.2 cFWE p < 0.01 visual letter  
Alonso-Lana et al. 2016 2-back > baseline 28 (16) 44.01 ± 6.03 5 cFWE p < 0.05 visual letter (2-back > rest/ bsl.) > (1-back > rest/ bsl.) 

 2-back > 1-back        
 1-back > baseline       

Bleich-Cohen et al. 
2014 

2-back > 0-back 20 (8) 26.4 ± 2.7  FDR p < 0.05 visual numbers  

Boller et al. 2017 2-back > rest 32 (25) 68.59 ± 6.5 9 FWE p < 0.05 visual letter (2-back > rest/ bsl.) > (1-back > rest/ bsl.) 
 2-back > 1-back        
 1-back > rest        

Campanella et al. 2013* 2-back > 0-back 16 (9) 21.6 ± 2.6  uncorrected p 
< 0.001 

visual numbers  

Cerasa et al. 2008 2-back > 0-back 30 (0) 30.79 6 cFWE p < 0.05 visual shapes  
Choo et al. 2005 2-back > 1-back 12  8 uncorrected p 

< 0.001 
visual letter  
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Ciesielski et al. 2006 2-back > baseline 10 (5) 23.5 ± 2.29 6 uncorrected p 
< 0.001 

visual figures  

Clark et al. 2017 2-back > 1-back 63 (35) 30.91 ± 6.01 7 cFWE p < 0.05 visual shapes/ 
letter 

 

Daamen et al. 2015* c 2-back > 0-back 73 (28) 26.51 ± 0.53 10 FWE p < 0.05 visual letter  
 2-back > rest        
 0-back > rest        

Daamen et al. 2015* v 2-back > 0-back 73 (29) 26.5 ± 0.49 10 FWE p < 0.05 visual letter  
 2-back > rest        
 0-back > rest        

Deckersbach et al. 2008 2-back > rest 17 (17) 25.6 ± 5.9 6 uncorrected p 
< 0.001 

visual letter (2-back > rest/ bsl.) > (1-back > rest/ bsl.) 

Dima et al. 2014 2-back > 0-back 40 (20) 31.5 ± 10.4 8 cFWE p < 0.05 visual letter (2-back > 0-back) > (1-back > 0-back) 
 1-back > 0-back        

Döhnel et al. 2008 2-back > rest 16 (8) 61 ± 10.2 8 uncorrected p 
< 0.001 

visual figures (2-back > rest/ bsl.) > (1-back > rest/ bsl.) 

Dores et al. 2017 2-back > rest 10 (4) 27.1 ± 2.89  FDR p < 0.05 visual shapes (2-back > rest/ bsl.) > (1-back > rest/ bsl.) 
Drapier et al. 2008 2-back > 0-back 20 (10) 41.9 ± 11.6   visual letter (2-back > 0-back) > (1-back > 0-back) 

 1-back > 0-back        
Duggirala et al. 2016 A 2-back > 0-back 50 (22) 23.62 ± 3.17 4  visual words  
Esteves et al. 2018 2-back > 0-back 31 (10) 60.29 ± 7.71 8 FWE p < 0.05 visual letter (2-back > 0-back) > (1-back > 0-back) 

 1-back > 0-back        
Fernández-Corcuera et 
al. 2013 

2-back > baseline 41 (17) 40.27 ± 9.8  cFWE p < 0.05 visual letter  

Forn et al. 2007 2-back > 0-back 10 (5) 31.1 8 uncorrected p 
< 0.001 

auditory letter (2-back > 0-back) > (1-back > 0-back) 

Fuentes-Claramonte et 
al. 2019 

2-back > rest 36 (16) 41.19 ± 
11.99 

5 cFWE p < 0.05 visual letter  

Fukuda et al. 2019* h 2-back > 0-back 24 (8) 23.54 ± 5.35 6 uncorrected p 
< 0.001 

visual numbers  

 2-back > baseline       
 0-back > baseline       
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Fukuda et al. 2019* 2-back > 0-back 24 (8) 25.29 ± 4.77 6 uncorrected p 
< 0.001 

visual numbers  

 2-back > baseline       
 0-back > baseline       

Garrett et al. 2011 2-back > 0-back 19 (6) 34.85 ± 
12.54 

4 cFWE p < 0.01 visual letter (2-back > 0-back) > (1-back > 0-back) 

 1-back > 0-back        
Gillis et al. 2016 2-back > 0-back 15 (0) 25.13 ± 4.55 4 cFWE visual letter/ 

visuospa
tial 

 

Goikolea et al. 2019 2-back > baseline 31 (15) 31.06 ± 8.76 8 FWE p < 0.05 visual letter  
Gropman et al. 2013 2-back > 1-back 21 (14) 31.8 ± 2.7 8 FWE p < 0.01 visual letter  
Habel et al. 2007 2-back > 0-back 21 (0) 30.77 ± 9.65 10 FDR p < 0.05 visual letter  
Habel et al. 2007 - Koch 
et al. 2007* 

0-back > rest 47 31.4 ± 10.4 10  visual letter  

Harding et al. 2016* 2-back > 0-back 34 (17) 33.6 5 cFWE p < 0.05 visual letter  
 2-back > baseline       
 0-back > baseline       

Heinzel et al. 2016 2-back > rest 29 (18) 66.04 8 FWE p < 0.05 visual numbers (2-back > rest/ bsl.) > (1-back > rest/ bsl.) 
 0-back > rest        
 1-back > rest        

Honey et al. 2000 2-back > 0-back 20 (0) 39.3 ± 13.6 7 uncorrected p 
< 0.0005 

visual letter  

Honey et al. 2003 2-back > 0-back 27 (6) 35.1 ± 9.9  uncorrected p 
< 0.001 

visual letter  

Huang et al. 2016 2-back > 1-back 18 (12) 43.17 ± 6.48 6  visual shapes  
 1-back > 0-back        

Jiang et al. 2015 o 2-back > 0-back 20 (10) 51.8 ± 5.9 8 FWE p < 0.05 visual numbers  
Jiang et al. 2015 y 2-back > 0-back 20 23.1 ± 3.1 8 FWE p < 0.05 visual numbers  
Johannsen et al. 2013 2-back > baseline 12 (8) 26.1 ± 4.7 8  visual letter (2-back > rest/ bsl.) > (1-back > rest/ bsl.) 
Jung et al. 2018* 2-back > 0-back 24 (11) 22.9 ± 2.7 6 FWE p < 0.05 visual numbers  
Kaminski et al. 2020* 2-back > 0-back 41 (12) 34.39 ± 8.53 6 FWE p < 0.05 visual numbers  



     61 

 2-back > baseline       
 0-back > baseline       

Kim et al. 2006 2-back > rest 12 (3) 34.4 ± 9.5  cFWE p < 
0.005 

visual letter (2-back > rest/ bsl.) > (1-back > rest/ bsl.) 

King et al. 2015* 2-back > 0-back 17 (11) 23.24 ± 5.89 5 cFWE p < 0.05 visual letter  
 0-back > baseline       

Knops et al. 2006 2-back > 1-back 13 (0) 27 ± 7.65 12 FDR p < 0.05 visual letter/ 
numbers 

 

Koppelstaetter et al. 
2008 

2-back > 0-back 15 (0)  8 cFWE p < 0.05 visual letter  

Korsnes et al. 2013 2-back > 1-back 11 (11) 30.2 ± 5.95 8 FDR p < 0.05 visual numbers  
Krug et al. 2008* 0-back > rest 85 (27) 23.27 6  visual letter  
Kumari et al. 2006 2-back > 0-back 13 (0) 33.31 ± 6.85 10 FWE p < 0.05 visual shapes (2-back > 0-back) > (1-back > 0-back) 

 0-back > rest        
 1-back > 0-back        

Lahr et al. 2018* 2-back > 0-back 83 (48) 49.11 ± 
10.33 

  visual letter (2-back > 0-back) > (1-back > 0-back) 

 1-back > 0-back        
 2-back > 1-back        

Lamp et al. 2016 1-back > baseline 16 (9) 23.94 ± 2.49 5 FWE p < 0.05 visual shapes  
Lee et al. 2013 1-back > rest 14 (5) 64.8 ± 4.2 8 FWE p < 0.025 visual numbers  
Leung & Alain 2011 A 2-back > 1-back 16 (9) 25.19 ± 5.13 6 FWE p < 0.05 auditory sound  
L. Li et al. 2014 2-back > rest 15 (15) 19.56 ± 0.81 8 uncorrected p 

< 0.001 
visual letter (2-back > rest/ bsl.) > (1-back > rest/ bsl.) 

 0-back > rest        
 1-back > rest        

L. Li et al. 2019a* 2-back > 0-back 24 (24) 25.63 ± 0.65 8 uncorrected p 
< 0.001 

visual letter  

 2-back > rest       (2-back > rest/ bsl.) > (1-back > rest/ bsl.) 
 0-back > rest        
 2-back > 1-back        
 1-back > rest        
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X. Li et al. 2019 2-back > 0-back 24 (8) 24.08 ± 4.34 8 cFWE p < 0.05 visual shapes/ 
letter 

 

Lim et al. 2008 1-back > rest 12 (7) 68.6 ± 6.2 8 FDR p < 0.01 visual letter  
Luo et al. 2014 2-back > 0-back 25 (0) 23.14 ± 1.83 8 FWE p < 0.05 visual faces  
Malisza et al. 2005 1-back > 0-back 6  8  visual shapes  
Marquand et al. 2008 2-back > 0-back 20 (13) 43.7 ± 8.3 8  visual letter (2-back > 0-back) > (1-back > 0-back) 
Matsuo et al. 2007 2-back > 0-back 15 (9) 37.7 ± 12.1 5 cFWE p < 0.05 visual shapes (2-back > 0-back) > (1-back > 0-back) 

 1-back > 0-back      numbers  
McAllister et al. 1999 2-back > 1-back 11 (7) 30.6 ± 11.2 15 uncorrected p 

< 0.001 
auditory letter  

 1-back > 0-back        
McGeown et al. 2008 1-back > 0-back 9 (6) 75.11 ± 1.62 8 FWE p < 0.05 visual words  
Meisenzahl et al. 2006 2-back > 0-back 12 (1) 33.58 ± 9.27 8 uncorrected p 

< 0.001 
visual letter (2-back > 0-back) > (1-back > 0-back) 

Migo et al. 2014 2-back > 0-back 11 (4) 70.27 ± 6.2 8 cFWE p < 0.05 visual letter (2-back > 0-back) > (1-back > 0-back) 
 1-back > 0-back        

Miró-Padilla et al. 
2019* 

2-back > 0-back 52 (31) 22.6 ± 1.45 8 uncorrected p 
< 0.001 

visual letter  

Monks et al. 2004 2-back > 0-back 12 (0) 45.6 ± 3.52   visual letter  
Nebel et al. 2005 f 1-back > baseline 19 (7) 30.3 ± 3.2 9 FWE p < 0.05 visual letter/ 

pictures 
 

Nebel et al. 2005 s 1-back > baseline 17 (11) 26.94 ± 5.5 9 FWE p < 0.05 visual letter/ 
pictures 

 

Ogg et al. 2008 0-back > rest 30 (17) 24.2 6 FWE p < 0.05 visual letter  
Park et al. 2016 2-back > 0-back 45 (23) 22.87 8 FWE p < 0.01 visual shapes  
Pfefferbaum et al. 2001 2-back > 0-back 10 (0) 60.2 ± 12.8 5 FWE p < 0.05 visual letter (2-back > 0-back) > (1-back > 0-back) 

 2-back > rest       (2-back > rest/ bsl.) > (1-back > rest/ bsl.) 
 0-back > rest        

Philip et al. 2016 2-back > rest 13 (9) 30 ± 9 6 FWE p < 0.05 visual letter (2-back > rest/ bsl.) > (1-back > rest/ bsl.) 
 0-back > rest        

Pomarol-Clotet et al. 
2008 

2-back > baseline 32 (11) 41.03 ± 
11.04 

 cFWE p < 0.05 visual letter  
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Qin et al. 2009 2-back > 0-back 27 (27) 20.52 8 cFWE p < 0.05 visual numbers  
Ragland et al. 2002 A 2-back > 0-back 11 (5) 32.2 12 FWE p < 0.05 visual letter (2-back > 0-back) > (1-back > 0-back) 

 2-back > 1-back        
 1-back > 0-back        

Rama et al. 2001 2-back > 0-back 8 (8) 22   auditory words (2-back > 0-back) > (1-back > 0-back) 
 1-back > 0-back        

Ricciardi et al. 2006 A 1-back > rest 6 (6) 28 ± 1 3.4 FDR visual shapes  
Richter et al. 2013 2-back > 0-back 34 (17) 23.8 8 FWE p < 0.05 visual faces  
Rodriguez-Cano et al. 
2014 

2-back > baseline 52 (32) 46.25 ± 
10.21 

  visual letter  

Rodriguez-Cano et al. 
2017 

2-back > baseline 26 46.77 ± 
11.18 

5 cFWE p < 0.05 visual letter (2-back > rest/ bsl.) > (1-back > rest/ bsl.) 

 1-back > baseline       
Salavert et al. 2018 2-back > baseline 41 (13) 31.7 ± 9.6 5  visual letter (2-back > rest/ bsl.) > (1-back > rest/ bsl.) 

 1-back > baseline       
Sánchez-Carrión et al. 
2008 

2-back > 0-back 14 24.2 ± 4.7 10 FDR p < 0.001 visual numbers  

Sapara et al. 2014 2-back > 0-back 20 (5) 31.95 ± 7.6 8 cFWE p < 0.05 visual shapes (2-back > 0-back) > (1-back > 0-back) 
 2-back > rest       (2-back > rest/ bsl.) > (1-back > rest/ bsl.) 
 0-back > rest        
 1-back > rest        
 1-back > 0-back        

Scheller et al. 2017 2-back > 0-back 34 68.82 ± 5.33 6 FWE p < 0.05 visual letter (2-back > 0-back) > (1-back > 0-back) 
 1-back > 0-back        

Scheuerecker et al. 
2008 

2-back > 0-back 23 (4) 32.6 ± 9.9 8 cFWE p < 0.05 visual letter  

Schlagenhauf et al. 
2008* 

0-back > rest 10 (2) 33.8 ± 12.5 8  visual numbers  

Schmidt et al. 2015 2-back > 0-back 32 24.6 8 FWE p < 0.05 visual letter  
Schneider et al. 2007* 0-back > rest 81 30.9 ± 8.3 10  visual letter  
Schneiders et al. 2011 2-back > 0-back 48 (26) 23.67 6 FDR p < 0.01 visual shapes  
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Seo et al. 2012 2-back > 0-back 22 (22) 38.27 ± 8.48  FDR p < 0.01 visual letter  
Seo et al. 2014 2-back > 0-back 34 (34) 59.3 ± 5.2 8 FWE p < 0.05 visual letter  
Shen et al. 1999 1-back > rest 9 (3)    visual shapes  
Smits et al. 2009* 0-back > rest 12 (4) 27.8 ± 10   auditory numbers  
Spreng et al. 2014 2-back > rest 36 (19) 22.3 ± 3.8 6  visual faces  
Thomas et al. 2005 2-back > baseline 16 37.6 ± 6.3 6 FWE p < 0.05 visual letter (2-back > rest/ bsl.) > (1-back > rest/ bsl.) 
Thornton and Conway 
2013 

2-back > 1-back 14 (9) 22 ± 2.45 6 cFWE p < 0.05 visual visual  

Vacchi et al. 2017* 2-back > 0-back 24 (12) 37.6 ± 12.2  cFWE p < 0.05 visual letter (2-back > 0-back) > (1-back > 0-back) 
 2-back > 1-back        
 1-back > 0-back        

van der Horn et al. 
2016* 

2-back > 0-back 20 (7) 34 8 uncorrected p 
< 0.001 

visual letter (2-back > 0-back) > (1-back > 0-back) 

 2-back > 1-back        
 1-back > 0-back        

Waiter et al. 2009 2-back > 0-back 37 (17) 69.8 ± 0.4 6 FWE p < 0.05 visual letter  
Walitt et al. 2016 2-back > 0-back 13 (13) 44.2 ± 11.2 8 cFWE p < 0.05 visual letter  
Wesley et al. 2017 2-back > 1-back 11 (7) 28.8 ± 7.8 8 uncorrected p 

< 0.001 
visual letter  

 1-back > 0-back        
Wishart et al. 2006 2-back > 0-back 22 (11) 68.5 ± 13.3 10 cFWE p < 0.05 auditory letter  
Wu et al. 2017* 2-back > 0-back 45 (21) 24.07 ± 4.83 6 FWE p < 0.05 visual numbers  

 2-back > rest        
 0-back > rest        

Yan et al. 2011 h 2-back > 0-back 28 (16) 20.4 ± 1.4 6 cFWE p < 
0.001 

visual shapes  

Yan et al. 2011 s 2-back > 0-back 28 (16) 20.9 ± 1.5 6 cFWE p < 
0.001 

visual shapes  

Yang et al. 2018 2-back > 0-back 24 (12) 22.1 ± 2.2 6 FWE p < 0.05 visual letter  
Yoo et al. 2004 A 1-back > rest 14 (5) 26.3 6 FWE p < 0.05 visual letter  
Yoo et al. 2005 2-back > 0-back 10 (2) 22.6 ± 1.4 6 FWE p < 0.05 visual faces  
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Ziemus et al. 2007 2-back > 0-back 9 (4) 44.2 ± 9.6 8 FWE p < 0.05 visual letter (2-back > 0-back) > (1-back > 0-back) 
Note: Study names with an asterisk * indicate, that the authors kindly provided additional contrast coordinates, not reported in the original publication. Small letters 
after the author indicate different subject groups in publication. Large letter (AȌ, indicate the “first” reported coordinates were used (in case of multiple experiments 
with the same group).  
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Supplementary Figure 1. A) Meta-analysis across 0-back > rest/ baseline experiments (21); B) Meta-analysis across 2-back > rest/ baseline experiments (31); Axial slices in MNI space. 

Additional literature-based meta-analyses results
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Supplementary Figure 3. Reduced 2-back > 0-back: Contrast between two meta-analyses (Cmeta) vs. meta-
analysis across contrasts (MCexp). Cmeta: (2-back > rest/ baseline) (21 experiments, matched to 0-back > 
rest/ baseline experiments) vs. (0-back > rest/ baseline) (21 experiments); MCexp: meta-analysis across 2-
back > 0-back (21 experiments, matched to Cmeta experiments); (A) cortex maps. (B) Axial slices in MNI 
space. 

Supplementary Figure 2. Brain regions revealed by contrast between meta-analyses (2-back > rest/ 
baseline) > (0-back > rest/ baseline) (Cmeta) and by large sample 2-back > 0-back contrast. (A) and (D) 
show large-sample contrast in red; Cmeta in green; Overlap of MCexp and large-sample contrast in yellow. 
(B) large-sample contrast. (C) Cmeta. Top row, cortex maps. Axial slices in MNI space. 
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