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Abstract—This paper demonstrates the combined use of three
simulation tools in support of a co-design methodology for an
HPC-focused System-on-a-Chip (SoC) design. The simulation
tools make different trade-offs between simulation speed, accu-
racy and model abstraction level, and are shown to be com-
plementary. We apply the MUSA trace-based simulator for the
initial sizing of vector register length, system-level cache (SLC)
size and memory bandwidth. It has proven to be very efficient at
pruning the design space, as its models enable sufficient accuracy
without having to resort to highly detailed simulations. Then
we apply gem5, a cycle-accurate micro-architecture simulator,
for a more refined analysis of the performance potential of our
reference SoC architecture, with models able to capture detailed
hardware behavior at the cost of simulation speed. Furthermore,
we study the network-on-chip (NoC) topology and IP placements
using both gem5 for representative small- to medium-scale
configurations and SESAM/VPSim, a transaction-level emulator
for larger scale systems with good simulation speed and sufficient
architectural details. Overall, we consider several system design
concerns, such as processor subsystem sizing and NoC settings.
We apply the selected simulation tools, focusing on different levels
of abstraction, to study several configurations with various design
concerns and evaluate them to guide architectural design and
optimization decisions. Performance analysis is carried out with
a number of representative benchmarks. The obtained numerical
results provide guidance and hints to designers regarding SIMD
instruction width, SLC sizing, memory bandwidth as well as
the best placement of memory controllers and NoC form factor.
Thus, we provide critical insights for efficient design of future
HPC microprocessors.

Index Terms—Co-design, Simulation, Emulation, Benchmark-
ing, HPC

I. INTRODUCTION

Designing high-performance, multi-core processors to sat-
isfy the needs of a given set of end users is a highly com-
plex process that requires bringing together vastly different
expertise and settle on complex architectural trade-offs. The
European Commission and the EuroHPC Joint Undertaking
have set up a strategy to support the development of Euro-
pean technologies for high performance computing (HPC).
One cornerstone of this strategy is the European Processor
Initiative (EPI), which aims at creating a new family of high-
performance processor and accelerator technologies designed
in Europe [26]. Its two main elements are a general purpose
processor based on the Arm architecture and an accelerator
implementing the RISC-V instruction set architecture. With
this portfolio, the EPI processing units address the require-
ments of HPC while keeping larger market sectors in mind,
including the automotive, cryptography, artificial intelligence
industries, and trusted IT infrastructures, among others.

In EPI, processor development is driven via co-design, a
bi-directional and iterative interaction process between ap-
plication owners, hardware- and system-software developers.
The success of the co-design strategy relies on establishing
an efficient methodology to tightly connect application and
benchmark experts with the hardware and software develop-
ment team and across the various members of the project.
This interaction is achieved by using common tools and
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methods, naturally establishing a common language between
all involved parties. Co-design considers the entire system
stack from underlying hardware technologies to software
frameworks and applications.

The EPI co-design methodology is based on a multi-
level hierarchy of models and simulators providing growing
levels of precision at an increasing evaluation time, including
reference platforms, analytical models, trace-based simulators,
functional simulators, FPGA emulators, and RTL. The former
(higher level ones) provides fast response to design questions
while more precise insights are obtained from detailed sim-
ulation tools. Quantitative user-requirements are determined
running a selection of benchmarks and applications on this
set of simulation and modelling tools, in order to study
the impact of specific design parameters onto application’s
performance, energy efficiency, and cost. This paper describes
and exemplifies the architecture analysis and insights that
can be obtained in the context of chip design by combining
different simulation tools to gain insight into the impact of
alternative design parameters onto application performance
and system efficiency. For brevity, energy efficiency and chip
area are out of the scope of this paper.

Given the trade-offs between simulation speed, accuracy and
model abstraction level, we have selected three complementary
simulation tools to support a full co-design methodology:
MUSA, SESAM/VPSim and gem5. We consider several de-
sign concerns, such as processor SIMD instruction width,
NoC topology, as well as placement and sizing (processor,
on-chip memory and memory controllers). We exploit the
selected tools, focusing at different levels of abstraction, to
study several configurations with various design concerns and
guide architectural design and optimization decisions.

The main contributions of this work are (i) a multilevel
simulation-based co-design methodology, enabling (ii) a thor-
ough study of key design concerns of modern HPC processors
based on the Arm Neoverse V1 Reference Design. In this work
we assume support of Arm’s new Scalable Vector Extension
(SVE) instructions, which allows SIMD instructions having
a width between 128 and 2048 bits. Section II puts the
current paper in the context of other work performed in the
same area. Section III presents the methodology applied, and
the three used modelling tools: MUSA, SESAM/VPSim and
gem5. Section IV introduces the HPC processor under study
and raises design concerns addressed thanks to experimental
results provided by the co-design methodology. Lastly, con-
clusions and perspectives are presented in Section VI.

II. RELATED WORK

Co-design and simulation of multiprocessors are both im-
portant and challenging steps for computer architects. This
is due to the increasing complexity of design and the need
for early prototypes as a way of providing feedback and
validation of requirements and design specifications. This
section provides an overview of the different approaches in
this context without being exhaustive.

Many existing solutions take advantage of functional In-
struction Set Simulators (ISS), which execute program in-
structions while maintaining the internal processor registers
to emulate the behavior of microprocessors. gem5 [11] is one
of the most popular simulators, providing detailed simulation
of CPU models with full pipelining description. It also offers
the flexibility to evaluate systems at various abstraction levels
that cover a wide range of speed/accuracy trade-offs [12].
Other solutions [7], [47] use instruction-based ISS solutions to
model MPSoC environments, but they lack flexibility. While
offering a high degree of accuracy, slow simulation speed is
expected when addressing a detailed multiprocessor system,
such as complex systems embedding multiple CPUs and
running full-fledged OSs.

To address this complexity without hampering the simu-
lation speed, other approaches use Dynamic Binary Trans-
lation (DBT) in an event-driven simulation to provide high
simulation speed while being able to maintain instruction
accuracy. Among the open source virtual platforms, OVP
shows promising performance reaching hundreds of MIPS
[31]. It uses a DBT-engine called OVPSim, which is dedicated
to various processor, peripheral and platform models that are
available as open source software. OVPSim supports parallel
simulation for even higher performance, but this is limited
to non-deterministic simulation. Another DBT-based solution
is Graphite, whose functional core model relies on Pin [32].
In addition to parallelizing the functional and timing aspects
of the simulation, Graphite is also a distributed simulator
designed to enable the study of large-scale multicore architec-
tures, which would be otherwise unachievable with sequential
and cycle-accurate simulators.

Many full system simulation approaches take advantage of
the open source QEMU emulator [8]. QEMU is the state-
of-the-art DBT-based machine emulator, known for its good
compromise between simulation performance and porting
complexity. It supports multiple hosts and target processors
including x86, Arm, RISC-V, MIPS, SPARC and Alpha. In
[15], [20], [35], QEMU models are integrated into an event-
driven simulation environment such as SystemC while in [27]
they are coupled with an analytical timing model. Approaches
based on the integration of QEMU and SystemC differ mainly
in the way they interface the two simulation environments.

Many industrial solutions, such as Virtualizer [46] or Fast
Models [41] are available but have a significant cost and little
degree of customization for the needs of co-design activities.

A number of frameworks that target simulations with thou-
sands of nodes have been proposed in the past [16], [23],
[52], however, these frameworks focus mainly on network
events, and they do not model CPU components or sys-
tem software interactions in detail. More recently, Wang et
al. [48] presented a multi-level simulation framework capable
of modeling in detail many parts of the system architecture,
including power estimations; but is limited to single node
applications. Similarly, SST [40] is a multi-scale simulator
often used in combination with other simulators to model
distributed applications. In BE-SST [39], authors combine SST
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Fig. 1: Overview of the co-design methodology

with coarse-grained behavioral emulation models abstracting
from microarchitectural details in favor of simulation speed.
Other implementations integrate SST with a highly accurate
simulator but require too costly full system simulations to
produce a wide set of experiments [25].

The EPI itself uses multi-level simulation for purposes
others than co-design. For instance, software development and
tuning is done using a combination of full-system simulation
(such as QEMU), instruction set architecture (ISA) extension
simulation (Arm Instruction Emulator [2], Vehave [13]) and
RTL-based simulation of the Neoverse V1 core. Simulators
like gem5 have recently also been used to co-design another
Arm-based processor, namely the A64FX processor where
Fujitsu and RIKEN entered into a co-design process [29], [44].
Their evaluation, in particular, considered the SVE width [50].

III. CO-DESIGN METHODOLOGY

Virtual prototype tools are essential to perform Design
Space Exploration (DSE) of future HPC microprocessors. In
fact, we need to simulate several configurations with var-
ious design concerns and evaluate them to make the best
architectural design decisions. For efficient exploration, the
tools must be reconfigurable and fast enough to run multiple
iterations, as is required for architectural exploration as well
as software debugging and optimization. Meeting the above
requirements is challenging, as the simulation speed slows
down when the architectural complexity and the number
of processors increase. Hence, a continuous set of trade-
offs between simulation speed and model abstraction levels
must be considered. Therefore, we selected three simulation
tools: MUSA, SESAM/VPSim and gem5, which are used for
different purposes to obtain a full co-design methodology as
depicted in Fig. 1. Each of them is at a different level, ranging
from architectural exploration and analysis to SW development
with different runtimes. The following sections present details
and features of each one.

A. MUSA

The MUlti-level Simulation Approach (MUSA) is an end-
to-end methodology that uses traces to enable large-scale
simulations with different communication networks, numbers
of cores per node, and micro-architectural parameters in a
comprehensive HPC environment that considers the effects of
system software [21], [22]. To this end, MUSA employs two
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Fig. 2: Overview of the MUSA simulation infrastructure

components: (i) a tracing infrastructure that captures commu-
nication, computation and runtime system events; and (ii) a
simulation infrastructure that leverages these traces for simu-
lation at multiple levels. Fig. 2 illustrates its modular method-
ology that provides a streamlined workflow from tracing to
the final simulation output. MUSA’s simulation infrastructure
is able to change the level of simulation detail, from detailed
microarchitectural simulations to high-level analytical models.

Therefore, the MUSA methodology allows combining de-
tailed (higher computational cost) and high-level (higher sim-
ulation speed) simulations, with simulation speeds of several
MIPS. This enables large design space exploration studies
both at the socket level and of large-scale machines with
thousands of cores, in a reasonable amount of computational
time; while guaranteeing a high degree of accuracy. MUSA
supports instruction tracing both for Arm binaries, with a Dy-
namoRIO [18] plugin, and RISC-V binaries, using the Vehave
emulator. MUSA can simulate these detailed instruction traces
using a parameterized architectural simulator that models an
out-of-order multicore and a full memory hierarchy.

The out-of-order model considers dependencies between the
most fundamental vector memory instructions: load, store,
gather, and scatter. For loads and stores, dependencies are
considered when an in-flight memory operation is modifying
a subset of the addresses of the incoming memory operation.
For the case of gather and scatter instructions, these are split
into N loads or stores, respectively. For arithmetic instructions,
MUSA does not explicitly take into account their depen-
dencies. Instead, we consider the dependencies of arithmetic
instructions to be solved once the previous memory operation
becomes ready to be executed. This simplified dependency
model allows MUSA to simulate complex workloads in a short
amount of time. Regarding the memory hierarchy, MUSA can
be configured with multiple cache levels, each with its size,
associativity, miss status holding registers, latency, etc. Main
memory can be simulated via a simple model that considers
a fixed latency per access and allows a maximum number of
outstanding accesses; or it is also possible to hook detailed
simulators like DRAMSim2 [42] or Ramulator [28].

MUSA enables understanding application performance
while tuning multiple architectural parameters at large-scale.
However, it is not a cycle-accurate simulator and it lacks de-
tailed models for certain system components, e.g. NoC. While
MUSA is able to model key system software events such as
task scheduling, it does not enable booting a fully fledged
Operating System (OS), as supported by SESAM/VPSim.



B. SESAM/VPSim

SESAM/VPSim [14], depicted in Fig. 3, is designed for
SW/HW co-validation at early design stages. It provides
flexible and highly-configurable framework for SW design
and architectural exploration. The core of the simulation
is VPSim Platform Builder, which takes as input a high-
level platform specification written in a Python-based Domain
Specific Language (DSL). From this high-level specification, a
platform can be built using an internal hardware library as well
as proxy components to interface with external subsystems,
including SystemC, Python, and Functional Mockup Interface.
One of the main advantages of SESAM/VPSim is its ability to
dynamically configure the modeled platforms, by instantiating
virtual platforms at runtime without recompiling the simulator.
This offers a high flexibility in constructing the platform and
making adjustments during iterative HW and SW validation.

Fig. 3: Overview of the SESAM/VPSim platform

SESAM/VPSim has a rich library of CPU models, including
Arm and RISC-V, which are mainly provided by QEMU,
enabling very high simulation speed to be reached. QEMU
models are encapsulated in loosely-timed SystemC/TLM 2.0
modules and executed in the context of SystemC threads.
For performance estimation, QEMU models are complemented
with a SystemC library. It models various peripherals, memory
hierarchy components and implements HW counters.

Simulation models are highly-configurable, enabling to
evaluate the performance of different platform configurations
and find a suitable one that best meets SW/HW require-
ments. On top of the constructed platform, full software
stacks (e.g. BIOS, hypervisor, user space workloads) can be
run, profiled and debugged on the simulated platform. Since
SESAM/VPsim is not a cycle-accurate simulator, it must be
completed with more detailed micro-architectural parameters
study thanks to gem5.

C. gem5

The gem5 simulator [11], [30] is a cycle-accurate com-
puter architecture simulator, capable of modeling a variety of
hardware platforms. It provides models of varying complexity
for CPU cores, memory devices, coherent caches and on-
chip networks, which can be combined in a modular fashion.

An important component of gem5 is Ruby, which provides a
comprehensive model for the memory subsystem, and enables
the exploration of alternative cache organizations, interconnec-
tion networks, as well as cache coherency protocols (with the
SLICC DSL [30]). In particular, the Arm AMBA CHI proto-
col [3] has been recently implemented for gem5 Ruby [36].
The protocol implementation defines two basic components:
cache and memory controllers, implemented as state machines.
The cache controller can function as private L1/L2 cache
or as System Level Cache (SLC). When modeling a private
cache, the CHI cache controller acts as a Request Node (RN),
while functioning as a Home Node (HN) when modeling an
SLC. Most CHI transactions are implemented, and the block
allocation and replacement policy can be configured.

Once instantiated, CHI nodes communicate over a simulated
on-chip network. The gem5 on-chip network interconnect
model is provided by the Garnet subsystem [1]. Garnet sup-
ports detailed simulation of network traffic and timing effects
by modeling network routers at the micro-architectural level.

The main feature of gem5 is the ability to collect highly
detailed statistics for applications running on the simulated
hardware platform. This allows studying the effect of different
hardware design parameters on performance, and makes gem5
ideally suited for co-design investigations. In this paper, we
use gem5 in full-system mode, so that the simulation supports
the execution of both unmodified binaries (libraries and appli-
cations) and operating system (Linux).

The accuracy of the simulations, however, results in rela-
tively long simulation times. The gem5 simulator is therefore
suited for benchmarking, e.g., mini-applications [24].

IV. EXPERIMENTAL METHODOLOGY

A. Reference Architecture

We have selected as a reference architecture the Arm
Neoverse V1 Reference Design (RDV1) [6]. RDV1 uses the
latest Neoverse V1 core [5] that targets high-performance
and exascale computing markets. Fig. 4, shows the top level
RDV1 architecture. The processor element contains high-
performance Armv8.4-A Neoverse V1 cores, which include
micro-architectural improvements over previous Arm architec-
tures, and is the first implementation of the Scalable Vector
Extension (SVE) [45] by Arm, with two 256 bits wide
units (16 double-precision Flop/cycle). The core has separate
64 KiB L1 data and instruction caches, and a private unified
data and instruction 1 MiB L2 cache.

The interconnect element contains the Arm CoreLink
Coherent-Mesh-Network 650 (CMN-650), which is a high
bandwidth and low-latency system interconnect that supports
a wide range of applications. It is a highly scalable mesh
optimized for Armv8-A processors that can be customized
to meet system performance and area chip requirements. The
SLC provides CPUs and I/O requesters with a distributed,
scalable, low-latency, high-bandwidth SRAM for evicted or
stashed data. CMN-650 provides the option to connect either
CHI-based memory controllers or AXI-based memory con-
trollers using a AMBA5 to ACE5-lite bridge. This enables



Fig. 4: Top Level RDV1 Architecture

memory elements such as HBM memory stacks and DDR5/4
memories to be directly integrated into the system.

The RDV1 has three main configurations based on the mesh
size and the total number of connected processing elements.
Config-M presents a 3× 5 size mesh that can interconnect up
to 16 cores. It interconnects 16 Neoverse V1 cores running
at 1.6 GHz. It includes 1 MiB of SLC per core, distributed
across the mesh and DDR memory controllers. Config-L is a
scaled version with a 6×6 mesh that can interconnect up to 32
cores, with a 32 MiB SLC. It also includes several bridges to
interconnect HBM and/or DDR memory controllers. Figure 5
shows a detailed view of the right-bottom quadrant mesh.

Fig. 5: Quadrant detail: RDV1 Config-L

B. Design Concerns

The definition of a large-scale multiprocessor architecture,
such as RDV1, raises several architectural questions that our
work addresses. In this paper, we highlight three areas where
our co-design methodology produced actionable insights for
the design of our target HPC-optimized SOC: (i) vector

processing resources; (ii) cache and main memory system
performance; (iii) NoC topology and IP block placement.
First, computing resources must be correctly sized according
to application needs. Specifically, the impact of SVE register
length of Neoverse V1 cores on performance is one key focus
of our study. Then, memory access performance needs to be
thoroughly evaluated. We consider required on-chip memory
size dimensioning and external I/O bandwidth requirements
to settle on the number of memory controllers. Finally, HPC
designs also raise the question of best NoC topology and IP
placement, while considering various design scales.

The initial dimensioning of SVE register length, SLC size
and memory bandwidth is done first, thanks to MUSA which
is very efficient at pruning the design space for certain
architectural components, as its models enable good accuracy
without the need to resort to highly detailed simulations.
Having selected the most relevant design parameters, refined
analysis is conducted with gem5, whose models capture the
real hardware behavior at the cost of simulation speed. NoC
topology and IP placements are studied using both gem5
for maximal accuracy and SESAM/VPSim for larger scale
systems with good simulation speed and sufficient architectural
detail. This speed also allows the usage of real-case parallel
applications to increase confidence in observed behavior.

C. Benchmarks

To study the behavior of the architecture for its various
configurations, a set of HPC benchmarks were selected to
specifically stress each design aspect of the target architecture.
We use DGEMM (Double-precision, GEneral Matrix-Matrix
multiplication [17]), developed within the BLIS framework
[51], as a compute-bound benchmark for assessing CPU
performance. The binaries were compiled with fixed SVE
vector length. We use STREAM (TRIAD) [34] as a rep-
resentative benchmark for HPC applications sensitive to the
available system bandwidth. We choose WaLBerla [19] as an
example of a stencil kernel. For the STREAM benchmark,
the percentage of memory bus serves as our performance
measure. For WaLBerla, we use the attained number of Million
Lattice Updates Per Second (MLUPS). These benchmarks
are complemented with more HPC-targeted applications that
mimic large-scale emerging programs. In this category, the
PARSEC [10] and SPLASH-2 [49] benchmark suites are
selected for multiprocessor architectures with shared memory.

D. Multi-level consistency Validation

For the proposed multilevel methodology to be valid, sim-
ulators used through the different design stages must deliver
comparable values on basic performance hardware counters for
the core and memory hierarchy, such as executed instructions
and committed instructions, operations, reads, writes, SIMD,
floats and integers. Counters also include the number of
accesses for L1D, L1I, L2 and SLC accesses, misses, and
bandwidths from the memory layers. Comparison study was
performed in two steps. First, performance counters reported
by the simulators were compared through microbenchmarks:



Fig. 6: NoC topologies for gem5 exploration

FMLA-Bench using 30 concurrent vector instructions, and
a simplified version of STREAM (TRIAD). Second, results
from gem5 were proof-checked against an equivalent real
machine (i.e. Neoverse N1) [4] using libfmp4 library. The
main counters of the microbenchmarks between the simulated
and real architecture are identical, with errors lower than
one per cent. This paper does not dwell on experiments
performed to ensure good simulators alignment but will now
exploit complementarity of the tools to address specific design
concerns raised by RDV1.

E. Architectural exploration and setup

All relevant architectural simulation parameters are summa-
rized in Table I. Fixed parameters for the study are shown
in regular font, while explored parameters are shown in
bold. All simulators used in this study reproduce the target
architecture at different levels of abstraction, so that the model
parametrization used by one simulator does not necessarily
correspond to the model parametrization of another. The gem5
simulator in particular takes as cache model parameter the
number of transaction buffer entries (TBEs1), which serve as
generalized version of the more familiar miss status holding
registers (MSHRs).

The gem5 network interconnect is simulated using a re-
cently improved version of Garnet [9], which supports the
simulation of multiple physical links between routers, and
allows the investigation of increased NoC bandwidth. The
cache coherency protocol used in gem5 is an implementation
of the AMBA CHI specification, as discussed above. The
gem5 memory controller models an HBM2 device taken from
the gem5-X project [37], [38]. The simulated HBM2 controller
delivers a peak bandwidth of up to 38.4 GB/s per channel.

The NoC topology layout, i.e. the placement of different
components on the NoC, is of critical importance for system
performance. Using gem5, we examine the effect of CPU
and SLC placement by evaluating three distinct 4 × 4 NoC
layouts, corresponding to the North West quadrant of a larger
8× 8 NoC, labeled T1, T2 and T3, shown in Fig. 6. In layout
T1, CPU cores and SLC slices are distributed homogeneously
over 8 routers. Whereas in layout T2, the SLC slices are
placed closer to the memory controllers, and T3 places the
cores closer to the memory controllers. Further architecture

1Within gem5 Ruby, TBEs are used to keep track of protocol transactions,
see [36] and the gem5 Ruby documentation for a more detailed description.

parameters such as private cache latencies and sizes are derived
from Arm Neoverse V1 reference design.

The reference model of SESAM/VPSim explores the be-
havior of larger systems ranging from 32 to 64 cores, mod-
elled using QEMU Arm V8.4-A ISA. The existing memory
hierarchy was extended to evaluate consistency traffic with an
MSI protocol and included a hybrid NoC model [33] able to
account for network congestions based on simulated traffic.
The model was validated against Garnet for its accuracy.
Based on this setup, three configurations for the placement
of four DDR controllers were evaluated as shown in Fig. 7.
The first configuration puts DDR blocks around corners. In
the second one, DDR controllers are placed in the middle
of NoC sides, forming a rhombus shape. Finally, the third
configuration groups them two-by-two on the longest opposite
sides (for NoCs of rectangle form). Besides, the impact of the
NoC size (i.e. form factor: square vs rectangle) on the NoC
global performance is also studied. Thanks to the simulation
speed reached by the model, for these experiments the set of
benchmarks was extended with nine more applications from
the PARSEC and SPLASH-2 set. Running these applications
on a single configuration generates around 11.4 Billion packets
on the NoC, increasing the confidence of the results for real-
case applications.

Fig. 7: DDR controllers NoC positions for 32 cores

We detailed MUSA’s out-of-order pipeline and cache hi-
erarchy models in Section III-A, and simulations use the
experimental parameters shown in Table I. Additionally, the
main memory system in MUSA is handled by Ramulator [28],
which is set to model HBM2 memory controllers and devices.
Therefore, Ramulator is interfaced with MUSA; all main
memory requests from MUSA are forwarded to Ramulator
memory controllers as they are generated.

V. NUMERICAL RESULTS AND ANALYSIS

To answer the design questions raised by the RDV1, this
section summarizes key results obtained using the proposed
co-design methodology. The studies cover a range of different
SVE register lengths, memory sizes, memory bandwidths,
NoC topologies, and IP placements.

A. SVE register length

Longer vectors can provide large performance benefits if
exploited efficiently. This largely depends on (i) workload
characteristics, i.e., the amount of code that is vectorized; and



Fixed/explored architectural parameters

gem5 MUSA SESAM/VPSim
Clocks System: 1.6 GHz; CPU: 2.4 GHz; NoC: 2.0 GHz; 2.0 GHz CPU: 1.0 GHz (one instruction per cycle, per core)

CPU #Cores: 16; Adjusted A76; Branch Pred.: BiMode; #Cores: 32; ROB: 256 entries; 4-wide issue/commit #Cores: 32, 64
Vector Unit: 2xSVE; SVE length:{256, 512} Vector Unit: 2xSVE; SVE length:{128, 256, 512, 1024} Vector Unit: 1xSVE; SVE length: 256

L1 Line size: 64B; Size: 64 KiB; Associativity: 4-way; Line size: 64B; Size: 64 KiB; Associativity: 4-way; Line size: 64B; Size: 64 KiB; Associativity: 4-way;
Inclusion policy: strict inclusive ; TBEs: 256; Inclusion policy: strict inclusive ; MSHRs: 64; Inclusion policy: NINE
Hit latency: 2-cycles (L1-D), 1-cycles (L1-I); Hit latency: 2-cycles (L1-D) Hit latency: 2-cycles (L1-D);

L2 Unified cache; Line size: 64B; Size: 1 MiB; Unified cache; Line size: 64B; Size: 1 MiB; Unified cache; Line size: 64B; Size: 1 MiB;
Associativity: 8-way; Hit latency: 4-cycles; Associativity: 8-way; Hit latency: 8-cycles; Associativity: 8-way; Hit latency: 4-cycles;
Inclusion policy: strict inclusive ; TBEs: 256 Inclusion policy: strict inclusive ; MSHRs: 64 Inclusion policy: NINE

SLCs Shared SLC cache; #Slices: 16; Line size: 64B; Shared SLC cache; One slice per core; Line size: 64B; Shared SLC cache; One slice per core; Line size: 64B;
Associativity: 16-way; Hit latency: 20-cycles; Associativity: 16-way; Hit latency: 22-cycles; Associativity: 16-way; Hit latency: 10-cycles;
Inclusion policy: Exclusive; TBEs: 256 per slice; Inclusion policy: Exclusive; TBEs: 64 per slice; Inclusion policy: Exclusive;
Size per slice: {1 MiB, 3 MiB} Size per slice: {256 KiB, 512 KiB, 1 MiB, 2 MiB, 4 MiB} Size per slice: 2 MiB

NoC Model: Garnet 3.0; Protocol: AMBA-CHI; Mesh: 4x4; Simple crossbar model with fixed 6-cycle latency; Hybrid NoC model [33]
Flit width: 64B; Router latency: 1-cycle; SLC slices connected to memory controllers Buffer size flits: 1; Router latency: 1-cycle
Link latency: 1-cycle; #VNETs: 4; XY Routing Link latency: 1-cycle; #VNETs: 1;
Topology: {T1, T2, T3}; Topology: {Mesh 6x6, 4x8, 8x8, 6x12};
Link configuration: {single, multiple}

Memory Model: HBM2; #Channel: 8; Size: 2x8 GiB Model: HBM2; Bandwidth per channel: 32 GB/s; Model: DDR; #Channel: 8; Size: 4x1 GiB
Bandwidth per channel: 38.4 GB/s Bandwidth per core (GB/s): 8, 16, 32 Memory blocks XY position in the NoC

TABLE I: Details of fixed and explored parameters setup with the methodology.

(ii) vector unit usage, i.e., by providing them with a constant
stream of instructions to process. The latter requires the core to
expose enough instruction-level parallelism, and the memory
hierarchy has to provide sufficient bandwidth to bring in the
demanded data.

1) Early SVE register length: As shown in Table I we
perform experiments with MUSA for SVE lengths of 128,
256, 512 and 1024 bits. Fig. 8a shows the instruction reduction
achieved as the SVE vector length increases, as well as the
obtained speed-up. For STREAM we obtain an almost linear
instruction reduction, as the main loop is composed of just a
few SVE instructions and there is no scalar code. However,
increasing the vector length has diminishing returns for lengths
above 256 bits, as the benchmark is memory bound. DGEMM
and WaLBerla present smaller instruction reductions: 1.72×
and 1.78× when going from 256 to 512 bit SVE, and 2.67×
and 2.91× when going from 512 to 1024 bits, respectively. In
contrast, the obtained speed-ups are larger than in STREAM.
DGEMM scales remarkably well up to 1024 bit SVE, and
WaLBerla obtains significant benefits from 512 bit vectors.
While scaling to 1024 bits SVE for many benchmarks is
challenging, SVE units of 256 or 512 bits are good design
points. Making a more informed decision between these two
requires further analysis, as described below.

2) Refined Impact of SVE register length: A further study of
the impact of SVE vector lengths is also performed with gem5.
Fig. 9 shows instruction reduction and speedup when evaluat-
ing 256- and 512-bit SVE vector lengths for the topology T1.
Fig. 9 shows that the breakdown of committed instructions
indicates high vectorization achieved with memory and SIMD
operations. When scaling vector length from 256 to 512 bits,
the total committed instructions of DGEMM are reduced to
a half. Meanwhile, the two memory-bound kernels STREAM
(TRIAD) and WaLBerla present around 40% reduction. The
impact of scaling to larger vector lengths for the two memory-
bound kernels is twofold: the effect of the Write allocation
mechanism (loading data into cache before updating), and the
benefits of instruction reduction. In the former, due to fitting
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(a) Sensitivity to SVE register length.

1.00 0.97 0.99 1.11 1.13 1.00 1.05 1.04 1.06 1.09 1.00 0.99 1.09 1.13 1.14 

0 
0.5 
1 
1.5 
2 
2.5 
3 
3.5 
4 
4.5 

0 
10 
20 
30 
40 
50 
60 
70 
80 
90 

2
5

6
K

B
 

5
1

2
K

B
 

1
M

B
 

2
M

B
 

4
M

B
 

2
5

6
K

B
 

5
1

2
K

B
 

1
M

B
 

2
M

B
 

4
M

B
 

2
5

6
K

B
 

5
1

2
K

B
 

1
M

B
 

2
M

B
 

4
M

B
 

Stream DGEMM WaLBerla 

Sp
e

e
d

-u
p

 

SL
C

 M
P

K
I 

SLC MPKI 

Speed-up 

(b) Sensitivity to SLC slice size, from 256 KiB to 4 MiB per core.
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(c) Sensitivity to available memory bandwidth per core.

Fig. 8: Evaluation of different key architectural parameters on
32 cores using MUSA with the parameters shown in Table I.

64B cache line size on write miss when using 512-bit vector
length, Write allocation is not necessary. For the STREAM
(TRIAD) kernel, this translates into a reduction in memory
operation usage from 3 LDs and 1 ST , to 2 LDs and 1 ST ,
when scaling vector length from 256 to 512 bits. In the latter,
reducing instruction when scaling vector length could lead



to reducing throughput on register file allocation, and thus
fewer stalls in the pipeline execution. To this end, speedups
for DGEMM, STREAM (TRIAD), and WaLBerla are 1.63×,
1.34×, and 1.24× respectively.

Fig. 9: Impacts of 256- and 512-bit SVE lengths evaluated for
Topology T1 (16 threads)

B. On-chip memory

Careful sizing of the SLC is paramount to design a processor
that exhibits a good balance between storage and compute
capabilities. An over-provisioned SLC wastes resources that
can be used to increase computational throughput by, for
example, adding more cores. Therefore, finding the appropriate
SLC size for the target workloads, i.e., a size that enables
capturing most of the performance of larger caches, is a key
design goal that can make a significant difference in the
overall chip performance. As shown in Table I we perform
experiments with SLC slices of 256 KiB, 512 KiB, 1 MiB,
2 MiB and 4 MiB per core using MUSA.

Fig. 8b shows the misses per kilo instruction (MPKI)
and performance speed-up for different SLC slice sizes. In
STREAM the 2 MiB SLC slice configuration attains a 1.12×
speed-up over the 1 MiB slice. While on DGEMM and
WaLBerla the 512 KiB and 1 MiB slice sizes already capture
most of the benefits, respectively. Therefore, sizes between
512 KiB and 1 MiB are likely to provide a good balance.

C. Memory bandwidth

1) Bandwidth requirements: Memory bound applications
are common in the HPC domain. Therefore, providing the
cores with sufficient memory bandwidth to feed the execution
units is one of the main bottlenecks in most systems. This
is exacerbated by the fact that as the length of the vector
units increases, workloads become even more memory bound.
As shown in Table I, we perform experiments with MUSA
by setting the amount of memory bandwidth available per
core to 8, 16 and 32 GB/s. Fig. 8c shows the memory
bandwidth usage when changing the available bandwidth per
core between 8, 16 and 32 GB/s. That is, peak bandwidths
of 256, 512 and 1024 GB/s. On memory bound benchmarks
like STREAM, increasing the available bandwidth leads to
significant performance improvements. With 16 GB/s per core

we reach a bandwidth usage of 93%, while with 32 GB/s per
core it drops to 61%; as cores are not able to produce enough
requests to saturate it. In WaLBerla, using 16 GB/s per core
also provides significant improvements, of 1.34×. DGEMM is
computed bound and 8 GB/s per core is sufficient to feed the
functional units. Given that memory bound applications are
common, more bandwidth is desirable. Having a bandwidth
of around 20 GB/s per core can likely capture most of the
performance benefits seen on the 32 GB/s configurations, as
that is the maximum amount of bandwidth used on STREAM
per core.
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Fig. 10: STREAM (TRIAD) memory bus utilization and
WaLBerla (16 threads, 3MiB SLC) MLUPS.

2) Refined bandwidth evaluation: To achieve the necessary
memory bandwidth as evaluated with MUSA, NoC bandwidth
is crucial. To shed light on this area, gem5 has been used to
assess NoC routers performance. Fig. 10 shows performance
of STREAM-TRIAD and WaLBerla (16 threads) for each of
the topology layouts T1, T2 and T3, using single- and multi-
channel VNET support, with 256 and 512 SVE vector length,
and 3 MiB SLC size. The performance effects of node place-
ment will be discussed below, here we focus on the effect of
additional network links. From Fig. 10, it is evident that both
STREAM and WaLBerla benchmarks benefit from increased
NoC bandwidth. For the T1 topology, STREAM goes from
around 50% bus usage to around 71%, for both 256 and 512
SVE register length. T2 shows similar improvement, as does



100 101 102

Average Network Latency [cycles]

VNET0

VNET1

VNET2

VNET3

14.34

8.24

8.96

10.25

25.86

9.17

17.23

20.69

26.19

9.98

10.17

10.56

65.20

9.97

20.27

16.03

18.01

10.45

11.15

10.02

34.47

13.49

20.42

13.29

T1-multi
T1-single

T2-multi
T2-single

T3-multi
T3-single

(a) Average Network Latencies for STREAM

10−1 100 101 102 103

Average Queueing Latency [cycles]

VNET0

VNET1

VNET2

VNET3

5.49

2.17

1.43

1.21

21.67

1.98

2.47

17.90

62.61

2.21

1.54

1.20

323.42

1.48

3.91

1.20

9.71

1.99

1.47

1.20

74.69

2.88

2.86

1.24

T1-multi
T1-single

T2-multi
T2-single

T3-multi
T3-single

(b) Average Queueing Latencies for STREAM

Fig. 11: STREAM (TRIAD) NoC latencies (VL=256, 16
threads, 3MiB SLC).

T3, although the T2 percentage bus usage only reaches around
50% of maximum when using multiple links, and both T2 and
T3 show lower bandwidth for the single link configurations.
Fig. 11a and Fig. 11b show the average network and queueing
latencies for STREAM-TRIAD running on the T1, T2 and T3
topology layouts. Queueing latency is defined by gem5 as the
time a NoC packet has to wait in the egress NoC Network
Interface until it gets injected in the NoC. NoC Network
latency, on the other hand, is defined as the NoC traversal
time, measured by gem5 from the moment a NoC packet is
injected in the NoC by the source Network Interface, until
the moment it reaches the destination Network Interface. As
expected, all topologies benefit from increased bandwidth. For
all topologies, the multiple link usage significantly reduces the
network latencies of the Request, Response and Data VNETs,
and the queueing latencies for the Request VNET. For T1,
the increased link bandwidth also drastically reduces the Data
(VNET3) queueing latency.

The WaLBerla benchmark also shows a performance im-
provement when using multiple links, although the perfor-
mance improvement depends strongly on the CPU/SLC place-

ment, and the SVE register length. For the T1 layout and
a vector length of 256 bit, the additional link bandwidth
improves the performance from 225.88 · 106 to 246.94 · 106
lattice updates per second (LUPS), which represents a speedup
of around 10%. On the other hand, for T1 with a 512-bit vector
length, the performance improvement is less than 1%. Layouts
T2 and T3 show greater sensitivity for reduced bandwidth.
Performance for multi-link configurations are similar for all
topologies, but the single-link configurations always perform
worse than T1 single-link.

As expected, the increased NoC bandwidth translates to
increased benchmark performance for memory sensitive ker-
nels. The magnitude of the speedup depends strongly on NoC
placement and SVE register length.

D. NoC dimensioning and IP placement

1) Node placement: Using gem5, we have evaluated the
effect of node placement on the performance of STREAM-
TRIAD (SVE-256, 16 threads, 3MiB SLC, multi-link), mea-
sured by percentage of Memory Bus usage (Fig.10a). As
we can see in Fig.11, T1 has the lowest NoC queueing
and network latencies, and is the best performing Topology
(reaching 71% memory bus utilization (in %)). Topology T3
presents slightly higher NoC Queueing and Network latencies
than Topology T1, and achieves comparable bandwidth per-
formance. On the other hand, Topology T2, the only layout
with two 4-Core Routers in the same Mesh row, shows the
worst performance with 50% Memory Bus. Having that many
RNFs, in the same row, in combination with the XY NoC
Routing algorithm, causes the VNET-0 (Requests) Queueing
latency to increase more than 10-fold, when compared to T1.
Also, the Network latency for the same VNET is doubled.

The average number of NoC hops for T1, T2, and T3 is 2.3,
2.5 and 2.7, respectively. The average hops per cycle for the
three topologies are 19.6, 15.2 and 22.7. Although T3 requires
higher NoC hops for STREAM TRIAD benchmark, it does
not get congested and maintains a high hops/cycle rate. These
factors contribute to T3 performing similarly to T1. Having
defined the best processing and memory IP placements, we
then focus on evaluating memory controllers positions and
NoC placements.

2) DDR memory controllers placement: NoC perfor-
mance is primarily evaluated using packets average latency
with more HPC-oriented applications, thanks to the faster
SESAM/VPSim simulation speed. As shown in Fig.12a and
Fig. 12b, no matter the form factor of the NoC, Configuration 3
performs better than Configuration 2, which in turn performs
better that Configuration 1 (see Configuration definitions in
Fig. 12). Indeed, the rhombus shape improves NoC perfor-
mance in routing packets but not as much as Configuration 3.
Detailed analysis of the source of the performance gain shows
that it is mostly contributed by the average packet distance
(Fig. 12c) which clearly improves with Configuration 3. DDR
controllers should be placed far from corners in order to
reduce the total distance of packets. On the other hand, DDR
controllers placement does not seem to have a significant



(a) Average Packet Latency (cycles) - 32 cores (b) Average Packet Latency (cycles) - 64 cores

(c) Average Packet Distance (in Hops) - 32 cores (d) Average Packet Queuing Delay (in cycles) - 32 cores

Fig. 12: Evaluation of DDR placement and NoC form factor on data exchange performance with SESAM/VPSim

impact on the average packet queuing delay (Fig.12d); no
configuration performs better on all benchmarks.

Besides, no conclusive behavior could be extracted from
the water nsquared benchmark. This application suffers from
non-determinism [43]. Indeed, while the number of memory
reads/writes remains almost the same across multiple runs,
the number of generated packets varies from simple to four-
teenfold due to coherency protocols. This prevents comparison
between configurations on the same basis.

3) NoC form factor: For each number of cores, two form
factors were compared: square (6 × 6 or 8 × 8) vs rectangle
(4 × 8 or 6 × 12). Comparison is made on the basis of
Configuration 3 that gives the best performance for both form
factors using SESAM/VPSim. On 32-core architectures, only
DGEMM and some small benchmarks (around 200 million
generated packets in total) give a slight advantage to the 6×6
mesh NoC. All the remaining applications, especially those
that generate more than 85% of the total traffic (i.e. ocean cp,
stream c and WaLBerla), reach higher performance with the
rectangular form factor 4 × 8. The average packet distance
analysis shows that the square shape induces an increase in the
number of routers traversed by packets. The same behavior is
generally observed on 64-core architectures (Fig. 12b).

In terms of congestion, unlike the placement of DDR
controllers, the NoC form factor can have an impact on the
average queuing latency. Congestion is managed better by the
4× 8 NoC than by the 6× 6 (Fig. 12d). However, results on
64-core architectures (not included in Fig. 12) do not confirm

that rectangle NoCs always perform better than square ones;
very comparable average queuing latency values were obtained
independently of the DDR memory placement or the NoC
form factor.

VI. CONCLUSION AND PERSPECTIVES

This paper describes and exemplifies the architecture anal-
ysis and insights that can be obtained by combining dif-
ferent simulation tools to better understand the impact of
alternative chip design parameters onto application perfor-
mance and system efficiency. Given the trade-offs between
simulation speed, accuracy and model abstraction level, three
complementary simulation tools were selected to support a
full co-design methodology: MUSA (a trace-based simulator),
SESAM/VPSim (a transaction-level simulator/emulator) and
gem5 (a cycle-accurate microarchitecture simulator). We con-
sider here several system design concerns.

Thanks to MUSA, a first dimensioning of SVE register
length, on-chip memory requirements and external memory
bandwidth was identified, reducing the design space for more
detailed simulators. Using SESAM/VPSim, large scale HPC
designs were studied with respect to NoC topology and
memory controller positioning. More detailed exploration was
conducted on smaller designs with gem5 providing a full
insight on the impact of SVE register length, NoC bandwidth,
and components placement strategies on RDV1 performance.

Our co-design methodology led us to actionable insights
about our reference HPC SoC architecture: (a) SVE register



length above 512 bits can significantly increase performance
for compute-bound benchmark such as DGEMM. However,
memory-bound benchmarks do not exhibit the same scaling.
This observation motivates the adjustment of trade-offs when
considering chip area and power consumption; (b) The benefit
of increasing the SLC size varies highly for different bench-
marks. Improvements on miss rate do not always induce a
significant overall performance gain (limited to +12% from
512 KiB to 1 MiB for memory-bound applications). This
observation justifies keeping the SLC at moderate size; (c)
Memory bandwidth needs were determined to be between 16
GB/s/core and 20 GB/s/core, which motivates the inclusion
of multiple links at the NoC level (up to 50% reduction
in network latencies); (d) NoC topology studies (for 16-
core system configurations) show that putting together on the
same node 2 SLCs slices and 2 cores is more efficient than
specializing nodes for either compute or storage; (e) Looking
at larger scale systems (32 and 64 cores), we find that it is
worth opting for a rectangle NoC form factor with the DDR
controllers placed in the middle of the longer sides.

The co-design methodology in this paper has already proven
valuable for the architectural definition and design optimiza-
tion in the EPI project. Its use is expected to continue to serve
us well in upcoming research development activities.
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