000903016 001__ 903016
000903016 005__ 20240712113256.0
000903016 0247_ $$2doi$$a10.3390/ijms222312653
000903016 0247_ $$2ISSN$$a1422-0067
000903016 0247_ $$2ISSN$$a1661-6596
000903016 0247_ $$2Handle$$a2128/29519
000903016 0247_ $$2altmetric$$aaltmetric:117900222
000903016 0247_ $$2pmid$$a34884462
000903016 0247_ $$2WOS$$aWOS:000735138100001
000903016 037__ $$aFZJ-2021-04745
000903016 082__ $$a540
000903016 1001_ $$0P:(DE-Juel1)142194$$aRodenbücher, Christian$$b0$$eCorresponding author
000903016 245__ $$aThe Structure of the Electric Double Layer of the Protic Ionic Liquid [Dema][TfO] Analyzed by Atomic Force Spectroscopy
000903016 260__ $$aBasel$$bMolecular Diversity Preservation International$$c2021
000903016 3367_ $$2DRIVER$$aarticle
000903016 3367_ $$2DataCite$$aOutput Types/Journal article
000903016 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1671711947_17992
000903016 3367_ $$2BibTeX$$aARTICLE
000903016 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000903016 3367_ $$00$$2EndNote$$aJournal Article
000903016 520__ $$aProtic ionic liquids are promising electrolytes for fuel cell applications. They would allow for an increase in operation temperatures to more than 100 °C, facilitating water and heat management and, thus, increasing overall efficiency. As ionic liquids consist of bulky charged molecules, the structure of the electric double layer significantly differs from that of aqueous electrolytes. In order to elucidate the nanoscale structure of the electrolyte–electrode interface, we employ atomic force spectroscopy, in conjunction with theoretical modeling using molecular dynamics. Investigations of the low-acidic protic ionic liquid diethylmethylammonium triflate, in contact with a platinum (100) single crystal, reveal a layered structure consisting of alternating anion and cation layers at the interface, as already described for aprotic ionic liquids. The structured double layer depends on the applied electrode potential and extends several nanometers into the liquid, whereby the stiffness decreases with increasing distance from the interface. The presence of water distorts the layering, which, in turn, significantly changes the system’s electrochemical performance. Our results indicate that for low-acidic ionic liquids, a careful adjustment of the water content is needed in order to enhance the proton transport to and from the catalytic electrode
000903016 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000903016 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x1
000903016 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000903016 7001_ $$0P:(DE-Juel1)180579$$aChen, Yingzhen$$b1
000903016 7001_ $$0P:(DE-Juel1)129946$$aWippermann, Klaus$$b2
000903016 7001_ $$0P:(DE-Juel1)137024$$aKowalski, Piotr M.$$b3
000903016 7001_ $$0P:(DE-Juel1)4744$$aGiesen, Margret$$b4
000903016 7001_ $$0P:(DE-Juel1)128707$$aMayer, Dirk$$b5
000903016 7001_ $$0P:(DE-Juel1)167581$$aHausen, Florian$$b6
000903016 7001_ $$0P:(DE-Juel1)140525$$aKorte, Carsten$$b7
000903016 773__ $$0PERI:(DE-600)2019364-6$$a10.3390/ijms222312653$$gVol. 22, no. 23, p. 12653 -$$n23$$p12653 -$$tInternational journal of molecular sciences$$v22$$x1422-0067$$y2021
000903016 8564_ $$uhttps://juser.fz-juelich.de/record/903016/files/ijms-22-12653-v2.pdf$$yOpenAccess
000903016 8767_ $$d2024-03-08$$eAPC$$jZahlung erfolgt$$zOABLE Report 03/24
000903016 909CO $$ooai:juser.fz-juelich.de:903016$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000903016 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142194$$aForschungszentrum Jülich$$b0$$kFZJ
000903016 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180579$$aForschungszentrum Jülich$$b1$$kFZJ
000903016 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129946$$aForschungszentrum Jülich$$b2$$kFZJ
000903016 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)137024$$aForschungszentrum Jülich$$b3$$kFZJ
000903016 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)4744$$aForschungszentrum Jülich$$b4$$kFZJ
000903016 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128707$$aForschungszentrum Jülich$$b5$$kFZJ
000903016 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167581$$aForschungszentrum Jülich$$b6$$kFZJ
000903016 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140525$$aForschungszentrum Jülich$$b7$$kFZJ
000903016 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000903016 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x1
000903016 9141_ $$y2021
000903016 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-05-04
000903016 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000903016 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000903016 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-05-04
000903016 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J MOL SCI : 2019$$d2021-05-04
000903016 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-04
000903016 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-04
000903016 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000903016 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000903016 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-05-04
000903016 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-05-04
000903016 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000903016 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-05-04
000903016 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000903016 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-05-04
000903016 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-05-04
000903016 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-05-04
000903016 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-05-04
000903016 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000903016 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000903016 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000903016 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000903016 920__ $$lyes
000903016 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
000903016 9201_ $$0I:(DE-Juel1)IEK-13-20190226$$kIEK-13$$lIEK-13$$x1
000903016 9201_ $$0I:(DE-Juel1)IBI-3-20200312$$kIBI-3$$lBioelektronik$$x2
000903016 9801_ $$aFullTexts
000903016 980__ $$ajournal
000903016 980__ $$aVDB
000903016 980__ $$aI:(DE-Juel1)IEK-14-20191129
000903016 980__ $$aI:(DE-Juel1)IEK-13-20190226
000903016 980__ $$aI:(DE-Juel1)IBI-3-20200312
000903016 980__ $$aUNRESTRICTED
000903016 980__ $$aAPC
000903016 981__ $$aI:(DE-Juel1)IET-4-20191129
000903016 981__ $$aI:(DE-Juel1)IET-3-20190226