001     903017
005     20240712112908.0
024 7 _ |a 10.3390/en14237989
|2 doi
024 7 _ |a 2128/29460
|2 Handle
024 7 _ |a WOS:000735127300001
|2 WOS
037 _ _ |a FZJ-2021-04746
082 _ _ |a 620
100 1 _ |a Dinkelbach, Jan
|0 P:(DE-Juel1)186790
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Factorisation Path Based Refactorisation for High-Performance LU Decomposition in Real-Time Power System Simulation
260 _ _ |a Basel
|c 2021
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1639555104_13119
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The integration of renewable energy sources into modern power systems requires simulations with smaller step sizes, larger network models and the incorporation of complex nonlinear component models. These features make it more difficult to meet computation time requirements in real-time simulations and have motivated the development of high-performance LU decomposition methods. Since nonlinear component models cause numerical variations in the system matrix between simulation steps, this paper places a particular focus on the recomputation of LU decomposition, i.e., on the refactorisation step. The main contribution is the adoption of a factorisation path algorithm for partial refactorisation, which takes into account that only a subset of matrix entries change their values. The approach is integrated into the modern LU decomposition method NICSLU and benchmarked against the methods SuperLU and KLU. A performance analysis was carried out considering benchmark as well as real power systems. The results show the significant speedup of refactorisation computation times in use cases involving system matrices of different sizes, a variety of sparsity patterns and different ratios of numerically varying matrix entries. Consequently, the presented high-performance LU decomposition method can assist in meeting computation time requirements in real-time simulations of modern power systems.
536 _ _ |a 1122 - Design, Operation and Digitalization of the Future Energy Grids (POF4-112)
|0 G:(DE-HGF)POF4-1122
|c POF4-112
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Schumacher, Lennart
|0 P:(DE-Juel1)190621
|b 1
|u fzj
700 1 _ |a Razik, Lukas
|0 P:(DE-Juel1)180368
|b 2
700 1 _ |a Benigni, Andrea
|0 P:(DE-Juel1)179029
|b 3
|u fzj
700 1 _ |a Monti, Antonello
|0 0000-0003-1914-9801
|b 4
773 _ _ |a 10.3390/en14237989
|g Vol. 14, no. 23, p. 7989 -
|0 PERI:(DE-600)2437446-5
|n 23
|p 7989 -
|t Energies
|v 14
|y 2021
|x 1996-1073
856 4 _ |u https://juser.fz-juelich.de/record/903017/files/energies-14-07989.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:903017
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)186790
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)190621
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)180368
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)179029
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-112
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Digitalisierung und Systemtechnik
|9 G:(DE-HGF)POF4-1122
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-05-04
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-05-04
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENERGIES : 2019
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-05-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-05-04
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-05-04
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-05-04
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-05-04
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-05-04
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21