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Abstract: The integration of renewable energy sources into modern power systems requires simu-
lations with smaller step sizes, larger network models and the incorporation of complex nonlinear
component models. These features make it more difficult to meet computation time requirements
in real-time simulations and have motivated the development of high-performance LU decomposi-
tion methods. Since nonlinear component models cause numerical variations in the system matrix
between simulation steps, this paper places a particular focus on the recomputation of LU decom-
position, i.e., on the refactorisation step. The main contribution is the adoption of a factorisation
path algorithm for partial refactorisation, which takes into account that only a subset of matrix entries
change their values. The approach is integrated into the modern LU decomposition method NICSLU
and benchmarked against the methods SuperLU and KLU. A performance analysis was carried out
considering benchmark as well as real power systems. The results show the significant speedup of
refactorisation computation times in use cases involving system matrices of different sizes, a variety
of sparsity patterns and different ratios of numerically varying matrix entries. Consequently, the
presented high-performance LU decomposition method can assist in meeting computation time
requirements in real-time simulations of modern power systems.

Keywords: direct linear solvers; matrix decomposition; high-performance computing; power system
simulation

1. Introduction
1.1. Motivation

The ongoing integration of renewable energy sources into modern power systems has
introduced challenges to the methods currently employed for power system simulation.
New types of dynamic phenomena, e.g., those caused by a decrease in power system
inertia, require smaller simulation step sizes and larger network models. Furthermore,
new power electronics-based devices increase the complexity of the power system and its
corresponding simulation model. These challenges make power system simulations more
computationally demanding.

Real-time simulators applied in hardware-in-the-loop (HiL) setups also face these
challenges. Real-time simulators should ensure deterministic computation times for fixed
simulation step sizes in order to interact properly with real hardware devices. For a
high level of accuracy, they perform electromagnetic transient (EMT) simulations that
calculate instantaneous waveform values with small simulation step sizes. However,
increasing simulation complexity makes it more difficult to keep computation times below
the specified simulation step sizes.
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To reduce the computational effort while maintaining a high level of accuracy, recent
research has aimed to change the modelling paradigm behind the simulation by considering
time-varying phasors that shift the original frequency spectrum and omit predominant
carrier frequencies [1]. Thus, the calculation of time-varying phasors according to shifted
frequency analysis (SFA) instead of instantaneous waveform values in the EMT domain can
enable the use of larger simulation step sizes and alleviate restrictions on the computation
times [2].

Complementary to a potential change of the modelling paradigm, our study aimed
to speed up the computation times required in each simulation step by applying a high-
performance LU decomposition method. Previous research works have shown that the
application of high-performance LU decomposition methods, particularly those designed
to operate on sparse matrices of power system simulations, can lead to a significant speedup
of computation times [3]. Hence, in this work, we considered the application of different
LU decomposition methods in real-time simulations and carried out a corresponding
performance analysis.

Furthermore, we particularly focus on improving the computational efficiency when
simulating power system components with nonlinear models. Nonlinear component mod-
els may cause numerically varying entries in the system matrix, i.e., either time-varying
or iteratively varying matrix entries. This requires recomputing the LU decomposition of
the system matrix once or multiple times during each simulation step. In this case, the
symbolic pattern (i.e., the matrix sparsity structure) remains constant, whereas numerical
variations occur for a subset of matrix entries. If subsequent recomputations of the matrix
LU decomposition are required, repeating computation steps depending on a constant
symbolic pattern can be omitted in the preprocessing and factorisation steps. The remaining
computation steps account for numerical variations in the matrix and are combined in the
so-called refactorisation step. Performing a refactorisation step after numerical variations in
the matrix occur can significantly speed up computation times and lead to computationally
efficient solutions of systems with nonlinear component models.

During the refactorisation step, we aim to exploit the fact that the number of varying
matrix entries is usually small compared to the overall number of nonzero entries in the
sparse system matrix. This is the motivation to refrain from a full refactorisation, which
applies refactorisation operations to all nonzero entries of the matrix. Instead, a partial
refactorisation is employed in order to take into account that only a small subset of nonzero
matrix entries is numerically varied.

1.2. Related Work

Comparative analysis of the performance of LU decomposition methods for sparse
matrices, which occur in power system simulations, has been carried out in previous
studies [3,4]. Among others, the LU decomposition methods SuperLU, KLU and NICSLU
have been benchmarked in these studies. In particular, it was shown in [3] that the
application of NICSLU can yield improved refactorisation computation times, which is
also a major motivation for employing NICSLU in this work. An advancement in this work
compared to [3] is that refactorisation is sped up by means of partial refactorisation.

LU decompositions for sparse systems are not only applied by MNA based real-time
solvers, as described in the present work in Section 2.1. Another potential application is
shown in [5], where LU decompositions were used as subroutines of differential-algebraic
system of equations (DAE) solvers. This applies, for instance, to SUNDIALS/IDA, a
general-purpose DAE solver that is used by the variable time step solver of Dynaωo, an
offline power system simulation suite [6,7]. Furthermore, Newton–Raphson (NR) method
based solvers for nonlinear systems such as SUNDIALS/KINSOL, e.g., used by Dynaωo’s
fixed time step solver, also apply LU decompositions. Another application of such NR
methods in power system simulation is the solution of load-flow problems based on Runge–
Kutta methods [8], whose many Jacobian factorisations have motivated improvements of
the applied LU factorisation methods.
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However, the computational improvement of LU decomposition methods used by
outer NR methods is not the only way to improve the overall computational performance.
Instead, the computational performance of the overall calculation can be improved by
reducing the total LU factorisations required to reach the final solution. For instance, ref. [9]
presents two modern methods of this kind. The first is based on the third-order Newton-
like method of Weerakoon, and the second is based on that of Özban. Both methods are
modified in a way to benefit from the seventh order of convergence. Although both new
methods require more function evaluations and the first method also has one more Jacobian
evaluation than its original counterpart, they enable computational savings higher than
20% and 30%, as was shown with the aid of three power system operation scenarios.

However, in the present work, we focus on the improvement of the computational
efficiency of the LU decomposition itself, particularly its refactorisation step. Other works
have proposed approaches that target the speedup of the refactorisation step of LU decom-
position methods. The authors in [10] suggested partition-based decompositions. These
methods are based on the idea of partitioning matrices into sub-blocks, some of which
contain numerically changing values. Subsequently, from this knowledge, a block-based
updating algorithm can be developed for refactorisation. The drawback of this method
is that it fully refactorises blocks that contain numerically changing values, without con-
sidering which parts of those that are refactorised need to be recomputed and which can
be neglected. This leads to a potential unnecessary surplus of computations, especially
if there are few numerically changing values. This motivates the improvement of the
refactorisation approach by further reducing the number of computations, which is the
main aspect of this work.

The research work presented in [11] also aimed to speed up refactorisation. In [11], the
sparse matrix solver under investigation was KLU. The authors proposed a pivot validity
test to ensure numerical stability as well as a partial refactorisation approach to accelerate
the refactorisation process. The partial refactorisation approach discussed in [11] is based
on the idea that the factorisation algorithm successively constructs the LU columns, starting
from the leftmost column. It uses the previously computed columns for the factorisation.
If an entry in the original matrix changes, it is possible to restart the factorisation at its
corresponding column in the LU matrix and retain all columns to the left of it. Here, it
should be mentioned that the LU matrix is a single matrix that stores the nonzero entries
of the L and U matrices. A drawback of the algorithm in [11] is that it does not consider
the column dependencies within the LU matrix. It refactorises all columns to the right of
the first numerically varied one in the LU matrix, regardless of whether they need to be
updated or not, which is a key difference to the approach presented in this paper.

Instead of completely refactorising all columns to the right, one can determine the
so-called factorisation path [12,13], which contains the column-wise dependencies of
the decomposed matrix. It is assumed that the symbolic pattern of the matrix does not
change. Given an LU decomposition and a list of entries in the original matrix that holds
information about which entries are numerically changing, one can determine the so-called
factorisation path encompassing the columns to be refactorised. This leads to a smaller
number of columns that have to be recomputed in order to factorise the numerically
varying matrix. This concept of partial refactorisation is adopted within this paper and
is described in more detail in Section 3.1. To the knowledge of the authors, no libraries
currently implement a factorisation path based refactorisation approach.

1.3. Contribution and Outline

The main contribution of this work is the adoption of a factorisation path algorithm
from the literature for the implementation of partial refactorisation in real-time simulations.
We propose the integration of partial refactorisation into the modern LU decomposition
method NICSLU [14] and provide evidence for its high performance based on experimental
analysis. The analysis encompasses a performance comparison against the widely applied
LU decomposition methods SuperLU [15] and KLU [16]. By interfacing the proposed LU
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decomposition method with the commonly applied Eigen library [17], our implementation
can be used not only by the open-source real-time simulator DPsim [18], as performed in
this work, but also by other software projects making use of solvers for sparse linear systems.

In the following, Section 2 outlines the fundamentals essential for this work by describ-
ing a solution procedure commonly employed in real-time simulations and delineating the
main concepts of relevant LU decomposition methods. Section 3 explains the proposed
high-performance LU decomposition method, while its evaluation via use cases is covered
in Section 4.

2. Fundamentals
2.1. Real-Time Simulation Solution Procedure

In real-time simulation, a common solution procedure to calculate the power system
behaviour is modified nodal analysis (MNA), e.g., as employed by the commercial simu-
lators Hypersim, RTDS [19] and the open-source simulator DPsim [18]. MNA provides a
formalism to derive an equation system for the simulation of a given power system [20]:[

Y B
C 0

][
V
I

]
=

[
J
F

]
. (1)

According to MNA, the shown LES incorporates the Kirchhoff current laws of all
network nodes by means of the node admittance matrix Y, the node potentials V and the
vector J of independent current sources. Independent voltage sources as well as either
the current- or voltage-controlled ideal voltage and current sources are represented by
means of matrices B and C together with vectors I and F. To represent the behaviour of
dynamic components, the equation system can incorporate previous states to calculate a
new system state by including equivalent admittances and sources that embed information
on the past [21].

The formulation in Equation (1) is compatible with linear network and ideal source
models. However, in simulations with a high level of detail, more complex nonlinear
models of dynamic power system components, such as high-order synchronous generator
models or models of power electronics devices, are included. In general, the dynamic
behaviour of such components can be described by a first-order nonlinear ordinary differ-
ential equation (ODE) system:

ẋ = f (x, u, t), (2)

where x is the vector of the component’s state variables, and u is the vector of the com-
ponent’s input signals [22]. The literature contains several approaches to incorporate a
nonlinear power system component described by an ODE system, as in Equation (2), into
the MNA system representation of Equation (1). A traditional approach referred to as
delayed-current injection method (DCIM) [23] calculates the nonlinear component be-
haviour based on the input from the previous time step, i.e., with a delay of one time
step in the input, and incorporates the solution as a current source injection into the MNA
system formulation [24]. However, this approach, which solves the nonlinear component
equations separately from the system equations, may lead to significant inaccuracies and
instabilities for larger time steps [19]. Other approaches partially or fully integrate the
corresponding nonlinear ODE system into the MNA system formulation [19,20,25,26].

Depending on the type of approach, this can lead to a variation in the entries in the
MNA system matrix in two ways:

1. Time-varying matrix entries, e.g., time-varying conductance entries that correspond
to a high-order nonlinear voltage-behind-reactance (VBR) synchronous machine
model [25];

2. Iteratively varying matrix entries to run fixed-point algorithms, e.g., the NR method, to
solve the nonlinearity by iterating multiple times within one time step. The matrix
entries incorporate partial derivatives into the MNA system matrix [19,20,26].
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Overall, depending on the considered power system components, the corresponding
models and the chosen solution approach, a linear equation system (LES) is derived that
can be written in generic matrix form as

Ax = b, (3)

where A is the MNA based system matrix, x the solution vector of unknown current and
voltage state variables, and b is the right-hand side (RHS) vector of known current and
voltage quantities. Based on the MNA, this LES is built in a systematic manner for a given
power system. It is composed by applying a dedicated matrix stamp for each power system
component, which corresponds to its impact on the power system’s equations.

In the following, as depicted in Figures 1 and 2, we distinguish between two phases
in which the substantial computation steps of the MNA based solution procedure and the
applied LU decomposition method can be performed. First, the simulator’s initialisation
phase takes place before the start of the simulation, prepares data structures and performs
computations, the outcome of which can subsequently be reused. Second, in the simulator’s
simulation phase, the computations are performed for each simulation step in real time by
scheduling them according to wall-clock time.

Build system 

matrix 









MNA matrix 

stamping


LU Decomposition









Preprocessing

+ Factorisation


Set component
behaviour


Set right side

vector

Solve system


 Solve for  

with   and 

Forward-backward
substitution

Simulation phase


Initialisation phase

Figure 1. MNA based solution procedure for real-time simulation with a constant system matrix.

If neither time-varying nor iteratively varying matrix entries are present, the MNA
system matrix remains constant over the entire simulation phase. Given this condition, as
depicted in Figure 1, the MNA system matrix and its corresponding L and U decompo-
sition matrices can be computed during the initialisation phase. During the simulation
phase, only the RHS vector bk is updated according to the components’ behaviour at
a discrete-time instant k. Based on that, the solution xk can be determined by means
of forward/backward substitution and reusing the L and U matrices, which have been
precalculated in the initialisation phase. The main advantage is that the computationally
demanding preprocessing and factorisation steps of the LU decomposition method can
be performed during the initialisation phase, and their outcome can be reused during the
simulation phase.

As explained above, the incorporation of nonlinear power system components into
the system solution may lead to time-varying and/or iteratively varying matrix entries.
Nonetheless, as shown in Figure 2, the preprocessing and initial factorisation can be per-
formed during the simulator’s initialisation phase. During the simulation phase, the matrix
entries are updated according to the corresponding component behaviour that leads to an
MNA system matrix A(j)

k , where k is the discrete-time index, and j is the iteration index of
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any fixed-point algorithm. Consequently, due to the numerical variation in matrix entries,
the LU decomposition matrices L(j)

k and U(j)
k need to be recalculated; i.e., refactorisation

needs to be performed. Based on that, the solution x(j)k for each time k and iteration j can
be determined by forward/backward substitution.

Simulation phase


Initialisation phase

Set component
behaviour


Set system 

matrix 

Build system 

matrix 









MNA matrix 

stamping


LU Decomposition









Preprocessing

+ Factorisation


Set component
behaviour


Set right side 

vector 


LU Decomposition









(Partial)

Refactorisation

Solve system

Solve for  


with   and 

 


Forward-backward
substitution

Figure 2. MNA based solution procedure for real-time simulation with a varying system matrix,
with k as the discrete-time index and j as the iteration index of any fixed-point algorithm.

In addition to a full refactorisation of the system matrix, in this work, we consider
a partial refactorisation. This is motivated by the fact that, usually, only a few nonzero
entries undergo numerical variations. The partial refactorisation approach chosen in this
work is explained in more detail in Section 3.1.

2.2. LU Decomposition Methods

In the following, we outline the main concepts behind the considered LU decompo-
sition methods. This serves as a basis for understanding how the partial refactorisation
approach is integrated into NICSLU and highlights key differences with respect to the
methods SuperLU and KLU, against which we benchmark the proposed method. In
this paper, we distinguish between four main steps of the considered LU decomposition
methods:

1. Preprocessing: Preprocessing involves steps for the scaling and ordering of the matrix.
This improves the numerical properties of the matrix and the performance of the LU
decomposition by reducing the fill-in (i.e., additional nonzero entries arising during
the factorisation).

2. Factorisation: The factorisation step performs the actual decomposition of the original
matrix into its corresponding L and U matrices.

3. Refactorisation: Refactorisation implies the simplification of the factorisation proce-
dure if subsequent LU decompositions are computed. Optionally, it may involve the
use of a partial refactorisation approach.

4. Solution: The computation of the solution vector is commonly based on a for-
ward/backward substitution approach that makes use of the decomposed LU matrix.

SuperLU [4,15,27] is a sparse LU decomposition method based on a matrix character-
istic named supernodes. The aforementioned general steps are implemented by SuperLU
as follows:
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1. Preprocessing: Optionally, SuperLU can determine diagonal scaling matrices for
stability. It then proceeds to calculate the column ordering of the input matrix, which
is determined to preserve sparsity (fill-in reduction).

2. Factorisation: To compute a numeric factorisation with partial pivoting, the method
aims to exploit the supernodal structure of the input matrices and calculates the LU
decomposition using the scaling (optionally) and fill-in ordering matrices.

3. Solution: To solve for the RHS, SuperLU uses forward/backward substitution.

KLU [16] is also designed to operate on sparse matrices, but it does not rely on
supernodes. In contrast, KLU performs additional preordering steps to yield a better-suited
matrix for factorisation. The steps of KLU encompass the following:

1. Preprocessing: KLU utilises the block triangular form (BTF) transformation, which
ensures a zero-free diagonal and orders the matrix to a form in which the resulting
matrix has smaller block matrices on its diagonal and zero entries below it. Then, the
Approximate Minimum Degree Ordering Algorithm (AMD) is performed for fill-in
reduction on each of these blocks.

2. Factorisation: In the numerical procedure, KLU factorises each block independently
with partial pivoting using the Gilbert–Peierls algorithm [28].

3. Refactorisation: If one needs another factorisation of a matrix with different numer-
ical values but the same symbolic pattern, KLU can perform factorisation without
recomputing the fill-in reduction or partial pivoting.

4. Solution: KLU successively solves for the unknown vector using forward/backward
substitution starting at the lowest block.

The main focus of NICSLU [14,29] is on the parallelisation of sparse LU factorisations.
This is conducted by analysing column dependency in the preprocessing step. Furthermore,
NICSLU implements the main steps as follows:

1. Preprocessing: NICSLU performs MC64 scaling, which places large values on the
diagonal and enhances numerical stability. As opposed to KLU, AMD is then used
on the entire matrix. As a final preprocessing step, static symbolic factorisation is
performed to determine parallelisability. The decision of whether to use parallelisation
is up to the user.

2. Factorisation: In contrast to KLU, factorisation is performed on the entire matrix. The
factorisation consists of two main steps: first, a symbolic factorisation to determine
the resulting column structure; second, a numeric factorisation with partial pivoting
using the Gilbert–Peierls algorithm.

3. Refactorisation: Numeric factorisation of the whole matrix without partial pivoting
reusing the scaling, permutation and pivoting choices can be conducted for different
numerical values, but only for the same symbolic pattern.

4. Solution: The RHS is solved using forward/backward substitution on the entire matrix.

3. High-Performance LU Decomposition
3.1. Partial Refactorisation Concept

In the following, we explain the concept of partial refactorisation, which was chosen
in this work to improve the computation time of the refactorisation step. To begin with,
having an LU factorisation, one can utilise it to determine the column dependencies in
the left-looking factorisation algorithm. The factorisation algorithm is called left-looking,
since it computes the LU decomposition column-wise from left to right. That is, it reads
the data of the LU matrix computed in prior iterations, which are stored in the columns
to the left of the current column. Here and throughout the entire paper, we refer to the
LU matrix as the single matrix that stores the nonzero entries of the L and U matrices in a
combined manner and which is equal to L− I + U. The main idea is that if one knows the
column dependencies of the LU matrix, any subsequent refactorisation can be expressed
as a factorisation of a subset of the LU columns. This was discussed by Chan, Brandwajn
and Tinney [12,13] and is referred to as the factorisation path algorithm. The algorithm
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was adopted in this study for partial refactorisation and is described in more detail in
the following.

The factorisation path algorithm stems from a symbolic view of the LU factorisation
procedure, i.e., only considering the nonzero entries but not their numerical values. In each
iteration k, the k-th column of A, denoted in the following as ak, is factorised and stored in
the LU matrix. The k-th column factorisation depends on ak and the factorised columns yj,
with j < k, computed prior to iteration k, which have been stored in the LU matrix.

In order to track how numerical variations in the original matrix affect the factorisation,
the values in the LU matrix that depend on these varying entries need to be identified.
If any value of ak changes, it affects the corresponding column yk in the LU matrix and
all subsequent columns to the right that depend on it. Since the left-looking algorithm
treats entries above the diagonal, i.e., entries having a row index i with i < k, differently to
those below it, one has to take into account the exact position of a changing entry when
computing the factorisation path.

First, an example is presented to illustrate the factorisation path computation. In Figure 3,
one can see a sample pattern of an L matrix. The decomposition here is assumed to be
performed without permutations and to be symmetric, i.e., U = LT , for simplicity. Further,
we assume that the entries in (2, 2) and (4, 4) of the original matrix have been changed.

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

Figure 3. L matrix of a symmetric LU decomposition, with changing entries in (2, 2) and (4, 4). The
singleton path is marked in red for (2, 2) and in green for (4, 4).

Starting from the first changed entry (2, 2) in the L matrix, one finds the closest off-
diagonal entry, which is (6, 2). Since the value is below the diagonal, the next loop iteration
starts at the corresponding diagonal entry (6, 6). This procedure is repeated until reaching
either the end of the matrix or an entry that is already part of the path.

After the first search loop for the initial column 2, the factorisation path is {2, 6, 8, 9},
consisting of all columns that have been found so far and need to be refactorised. Next, the
main loop has to be repeated for the second changed entry (4, 4). The affected entries are
denoted in green. This time, only columns 4 and 5 are added to the path, since 8 and its
subsequent columns are already in the path. The final factorisation path is {4, 5, 2, 6, 8, 9}.

In the following, the underlying algorithm is described in its general form. For any
numerically varied entry (i, j) in the original matrix, one has to determine its corresponding
entry (î, ĵ) in the permuted LU matrix. In NICSLU, those permutations originate from
AMD, MC64 and partial pivoting.

First, the column index k = min(î, ĵ) of the diagonal entry (k, k) is determined among
the entries in the LU matrix and is added to the factorisation path. Then, beginning from
the diagonal entry (k, k), the main loop of the algorithm starts. In each iteration, the
algorithm finds the closest off-diagonal entry in the LU matrix. If the closest entry (ĩ, j̃) is
above the diagonal, it chooses k = j̃, and if the entry is below, it chooses k = ĩ. Finally, the
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column index k of the corresponding diagonal entry (k, k) is appended to the factorisation
path. The loop finishes if either no further off-diagonal entry is found or k = n, where n is
the number of rows/columns of the matrix.

The algorithm above considers a single changed value, and it delivers a so-called
singleton path. The union of all singleton paths, starting from (1, 1), is the full factorisation
path of a matrix. The full factorisation path contains all columns of the LU matrix and
will not achieve any performance improvement if used during refactorisation, since the
iteration over the full factorisation path will result in the recomputation of all columns of
the LU matrix. The benefit of this full path is that it encodes the inner column dependencies
of the LU matrix; that is, it encodes which columns are dependent on one another and,
thus, if any column changes numerically, which columns will be affected and need to be
recomputed. It can be used to determine the columns to be refactorised if only a subset of
values vary in the original matrix. This potentially causes a performance improvement,
since the corresponding factorisation path no longer includes all of the columns.

The described algorithm has to be performed on the LU matrix, since this matrix
contains, in addition to ordering permutations, the partial pivoting permutation and
the fill-in values, which affect the inner column dependencies that the factorisation path
algorithm determines. Therefore, the algorithm can only be performed after a first LU
factorisation has been performed. The first full LU factorisation can be performed in the
simulator’s initialisation phase (see Figure 2), and then the computationally less expensive
partial refactorisation is executed during the simulation phase.

3.2. Implementation
3.2.1. Partial Refactorisation in NICSLU

During the implementation of the partial refactorisation based on a factorisation
path, it is important to carefully consider the data structures and ordering methods of
NICSLU [30] in order to properly compute the factorisation path on the LU matrix. On
the one hand, NICSLU uses the compressed sparse row (CSR) matrix format for internal
storage. This means that the matrix’s nonzero elements are only saved row-wise in a vector.
Moreover, another vector stores the indices of all elements of the first vector that are the
first element of a row. This saves memory space for nonzero elements and allows efficiently
accessing the matrix in a row-wise manner. This has to be considered when computing the
column-wise part of the algorithm.

On the other hand, the ordering methods applied by NICSLU have to be taken into
account during the determination of the factorisation path. As mentioned in Section 2.2,
NICSLU uses standard AMD and MC64 in the preprocessing step. In addition, NICSLU
performs partial pivoting in the factorisation step. Given these reorderings during prepro-
cessing and factorisation, an entry in the original matrix can be permuted to a different
location in the LU matrix. Hence, to obtain the corresponding permutations, preprocessing
and a regular factorisation have to be executed first. These permutations can be applied
to the locations of numerically varying entries in the original matrix and, as a result, the
locations of numerically varying entries in the LU matrix are obtained. Based on the
locations in the LU matrix, the factorisation path for partial refactorisation is determined.

After the determination of the factorisation path, the routine that actually computes
the partial refactorisation of the LU matrix can be called. According to the factorisation
path, NICSLU iterates over the subset of columns and only refactors these columns. After
this step, the implementation is the same as the original and can be used as such, e.g., calling
the solve routine for RHS solving. Additionally, it should be remarked that NICSLU’s
parallel interface was not employed in this work, since it did not yield any significant
performance improvements in the test cases.

If the partial pivoting choice with its corresponding permutation is kept while a subset
of matrix entries varies numerically throughout the simulation, this may deteriorate the
numerical stability of subsequent LU factorisations. To address this problem, the authors
of [11] proposed a pivot validity test, which ensures that the pivoting choice remains
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feasible. In the presented work, pivot validity testing was adopted by checking whether
the pivot element remained above a certain threshold. This testing was incorporated into
our NICSLU based refactorisation method. However, the pivot validity test was always
passed, and consequently, it had no impact on the considered use cases. Nonetheless, the
integrated pivot validity test shall ensure the numerical stability of our proposed method
when applying it in other use cases.

3.2.2. Integration into DPsim Real-Time Simulator

The performance of the LU decomposition methods was analysed in real-time sim-
ulation experiments. We employed the open-source C++ real-time simulator DPsim [31].
DPsim is implemented based on the C++ library for linear algebra named Eigen [17]. The
Eigen library offers support for custom linear solver libraries. By interfacing our implemen-
tations with the open-source Eigen library, they shall become reusable by other software
projects. For the integration of a new linear solver, the three main steps, as presented in
Section 2.2, must be interfaced:

• The preprocessing step using the analyzePattern routine,
• the factorisation step using the factorize routine and
• the solution step using the _solve_impl routine.

Eigen’s standard implementation for the LU decomposition of sparse matrices is
based on the SuperLU package [32] and named EigenSparse. To date, EigenSparse has been
employed with the real-time simulator DPsim. Here, we extended the Eigen library by two
new solver interfaces named EigenNICSLU and EigenPartialNICSLU.

For EigenNICSLU, the preprocessing routine analyzePattern not only determines
the permutations but also performs the allocation and initialisation of matrix- and NICSLU-
specific data structures. In addition, the key difference between EigenSparse and EigenNIC-
SLU is the refactorisation capability of the latter, which was implemented as an additional,
distinct routine named refactorize.

Furthermore, EigenPartialNICSLU interfaces and implements the factorisation path
algorithm. EigenPartialNICSLU uses the same analyzePattern routine as EigenNICSLU.
In addition to this, it modifies the factorize routine and adds the refactorize routine.
The factorisation path computation is performed after the first factorisation as part of
factorize. It receives a list of tuples of numerically varied entries as input. Using these
entries, it computes the factorisation path with respect to NICSLU’s permutations. It is
assumed that the pattern of numerically varying entries stays the same. Therefore, the
factorisation path is only computed once. Then, in each subsequent call of refactorize,
the partial refactorisation implementation for NICSLU is called, which iterates over the
columns in the factorisation path.

Apart from NICSLU interfaces, there has been a previous implementation of an
interface for KLU in Eigen. However, at present, the KLU interface does not provide a
refactorisation implementation. The integration of the factorisation path based partial
refactorisation into Eigen’s KLU interface could be part of further research work, but it is
beyond the scope of this paper.

4. Evaluation via Use Cases
4.1. Factorisation in Real-Time Simulation

The following performance analysis of the NICSLU method was carried out with the
real-time simulator DPsim. In the first use case, we exclusively investigated the factorisation
and solution performance of NICSLU. We benchmarked the two LU decomposition steps
and intended to highlight potential performance gains that can be achieved in real-time
simulation scenarios, in which the underlying system matrix remains constant and in
which no refactorisation is required.

For this purpose, we considered the simulation of the WSCC 9 bus benchmark system
by means of time-varying phasors according to the SFA. The benchmark system incorpo-
rates K = 9 network nodes, which leads to a matrix size of N = 48, and the number of
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nonzero matrix entries is NNZ = 204. Here, the benchmark system uses a linear network
representation and models the synchronous generation in a simplified manner by means of
ideal voltage sources.

As explained in Section 2.1, such a model is compatible with the MNA formulation in
Equation (1) and yields a constant MNA system matrix. Given a constant system matrix,
the LU factorisation has to be performed only once in the simulator’s initialisation phase, as
depicted in Figure 1, and refactorisation of the matrix is not required. Instead, the solution
vector has to be recalculated in each simulation step.

We compared the EigenNICSLU implementation, as described in Section 3.2.2, with
the previously available EigenSparse implementation based on SuperLU. In addition,
to indicate the impact of the underlying matrix size on the performance analysis, we
synthesised larger systems by interconnecting copies of the original benchmark system
through additional transmission lines between the load buses. By interconnecting up to
20 system copies, matrix sizes of up to N = 1134 were considered.

The computer system used has an AMD Ryzen 7 2700X 3.7 GHz (4.3 GHz Turbo) and
8 cores/16 threads running Fedora Linux with kernel version 5.13.19-200.fc34.x86_64.
GCC v11.2.1 with a global -O2 optimisation flag was employed for compilation. The wall-
clock times for factorisation and RHS solving were measured. Before and after each call,
monotonic clock values were measured using the chrono library from the C++ standard
libraries. The elapsed time was calculated. For both the factorisation and solution, the
average computation time per single step was determined. To diminish the effect of
variance, the measurements were repeated 100 times, and the average was computed.

The measured computation times of the factorisation are shown in Figure 4. Here,
the speedup is defined as the improvement of the computation speed of EigenNICSLU
compared to EigenSparse in relative terms and is calculated as the computation time of
EigenSparse divided by that of EigenNICSLU. As can be seen, EigenNICSLU leads to a
speedup of between 3.7 and 5.9 compared to EigenSparse. Overall, the speedup slightly
increases for larger matrix sizes, while fluctuations of this trend occur depending on the
underlying sparsity pattern. It should be noted that the speedup of the factorisation
improves the computation time of the initialisation phase only and has no impact on the
computation times during the simulation phase.

0 150 300 450 600 750 900 1050 1200
Matrix size

0

200

400

600

800

Co
m

pu
ta

tio
n 

tim
e 

[s
]

×10 6

EigenNICSLU
EigenSparse
Speedup

0

1

2

3

4

5

6

7

8

9
Sp

ee
du

p 
[-]

Figure 4. Factorisation computation times for an increasing number of system copies (the speedup is
defined as the computation time of EigenSparse divided by that of EigenNICSLU).

During the simulation phase, the time for the computation of the solution vector
is of particular relevance, i.e., the time for the computations according to the specific
forward/backward substitution approach applied by an LU decomposition method using
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its previously factorised LU matrix. As depicted in Figure 5, the computation of the
solution vector with EigenNISCLU is between 2.9 and 3.7 times as fast as with EigenSparse.
Here, the speedup of EigenNISCLU slightly decreases for larger matrix sizes.
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Figure 5. Solution computation times for an increasing number of system copies (the speedup is
defined as the computation time of EigenSparse divided by that of EigenNICSLU).

4.2. Refactorisation in Real-Time Simulation

In this use case, we analysed the performance of the refactorisation and solution
steps of the NICSLU method. As explained in Section 2.1, the computational efficiency of
both refactorisation and solution steps are of particular relevance in real-time simulation
scenarios, in which the integration of nonlinear component models leads to varying matrix
entries. In addition, we considered the proposed partial refactorisation implementation
and comparatively analysed its potential performance improvements.

As a use case, we performed an EMT simulation with a high level of detail of the
aforementioned WSCC 9 bus benchmark system. Instead of incorporating ideal voltage
source models to represent the synchronous generation, we employed a detailed model that
describes the component behaviour by a ninth-order nonlinear ODE system. The model
is a VBR model [25], which involves time-varying conductances. These conductances are
updated within the MNA system matrix once per simulation step and, hence, require
matrix refactorisation. The number of network nodes of the EMT benchmark system is
K = 9, the matrix size is N = 63 with NNZ = 198, and the number of varying matrix
entries, which originate from the included VBR models, is NVE = 27. In this use case, the
measurements of the average computation time for refactorisation and solution steps were
repeated 20 times to reduce the effect of variance.

Considering the full refactorisation of the system matrix in each time step, Figure 6
demonstrates that EigenNICSLU results in a speedup of 18.9 compared to EigenSparse
for the computation of the refactorisation. Moreover, the computation times required by
EigenNICSLU for determining the solution vector are 4.3 times as fast as with EigenSparse.

For a better understanding of the impact of partial refactorisation, Figure 7a shows the
original input matrix pattern in this use case. The numerically varying entries are marked
in red. This matrix was permuted and factorised in NICSLU to yield the pattern visible
in Figure 7b. Here, the entries changing between subsequent LU factorisations are marked
in red. It is observed that only a few columns have varying entries. Those columns are
{36, 55, 56, 57, 58, 59, 60, 61, 62}, which make up the resulting factorisation path when using
the adopted algorithm. The path contains nine columns, meaning that only 14.3% of all
columns have to be refactorised.
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Figure 6. Refactorisation and solution computation time per simulation step.
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Figure 7. Matrix patterns with varying elements. (a) Original input matrix A with the numeri-
cally changing entries marked in red; (b) decomposition matrix LU with changing entries between
subsequent factorisations marked in red.

When the factorisation path is considered during refactorisation by employing Eigen-
PartialNICSLU, the refactorisation computation time is further improved, as shown in
Figure 6. The corresponding speedup of EigenPartialNICSLU compared to EigenNICSLU
was 1.8. The solution computation time remained the same, as the resulting LU decomposi-
tion matrix did not differ between EigenPartialNICSLU and EigenNICSLU. Furthermore,
no modifications to the RHS solving routine were performed in EigenPartialNICSLU, so
in both cases, the same computations were performed in the solution step. However,
developing and analysing a partial RHS solving routine that uses a suitable dependency
path algorithm, similar to what is performed for partial refactorisation, can be part of a
future investigation.

4.3. Refactorisation of Large-Scale Matrices

In the following use case, for a thorough analysis of the refactorisation performance,
we extended the scope of our study by applying the proposed NICSLU method to matrices
with additional characteristics. We considered matrices that, on the one hand, are of very
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large size and, on the other hand, exhibit a variety of sparsity patterns that correspond
to real networks. Furthermore, we investigated the impact of the number of numerically
varying matrix entries on the performance of the partial refactorisation approach. The
analyses indicate the performance improvements that can be achieved in simulations of
large real networks and take the impact of the number of nonlinear component models
into account.

We chose a set of 10 sample matrices with the characteristics shown in Table 1. The
analysis involves the consideration of large-scale matrices corresponding to networks with
up to 7500 nodes and matrix sizes of up to 220,000. The matrices belong to real networks
of the French transmission system. They were extracted from the offline simulation tool
suite Dynaωo [6,33], which builds the mathematical problem for time-domain simulation
in the form of a DAE from C++ and Modelica models and is capable of conducting steady-
state, short-circuit and a variety of network stability studies. Even though the underlying
mathematical problem formulation of the matrices in this case differs from the MNA based
formulation in the real-time simulation described in Section 2.1, the matrices can serve as a
basis for a systematic analysis of the performance of NICSLU and the implemented partial
refactorisation approach, because they still exhibit sparsity patterns as they can be found
in power system simulations of real networks.

Table 1. Characteristics of matrices from the French transmission system (K = number of nodes,
N = matrix size, NNZ = number of nonzeros, d = density factor according to NNZ

N·N ).

No. Power Grid K N NNZ d [%]

(1) Regional EHV/HV with SL 1000 11,003 44,623 0.036
(2) French EHV with SL 2000 26,432 92,718 0.013
(3) French EHV/Regional HV with SL 4000 56,564 183,278 0.0057
(4) French EHV with VDL 2000 60,236 188,666 0.0051
(5) F. + one neighbour EHV, SL 3000 47,900 20,5663 0.0089
(6) F. + one neighbour EHV, VDL 3000 75,300 266,958 0.0047
(7) F. + neighb. countries EHV, SL 7500 70,434 267,116 0.0054
(8) F. EHV + regional HV, SL 4000 90,940 316,280 0.0038
(9) F. EHV + regional HV, VDL 4000 197,288 586,745 0.0015

(10) F. + neighb. countries EHV, VDL 7500 220,828 693,442 0.0014

In the analysis carried out, the matrices were not refactorised during actual simulations.
Instead, the matrices were extracted from the offline simulation tool and then refactorised
after systematically randomised numerical variations were introduced. In particular, this
enables the systematic analysis of the impact of different ratios of varying matrix entries.
In addition, in this analysis, we compared the performance of NICSLU with that of KLU,
since previous studies have shown that the latter performs well, as outlined in Section 1.2.

To compare KLU, NICSLU and PartialNICSLU, a measurement environment was set
up independently from Eigen. For each solver, a driver (i.e., a program with a main routine
utilising the solver) that measures the elapsed time of refactorisation was implemented. To
impose a certain ratio of varying matrix entries, we randomly varied a subset of rows after
the factorisation of those entries. The size of the varied subset is an input parameter set by
the user and is indicated here by percentage values.

We analysed the performance of the refactorisation procedures of KLU and NICSLU,
as described in Section 2.2, as well as that of PartialNICSLU, as described in Section 3.2.1.
First, we considered a fixed percentage of varying matrix entries of 0.1%. The measured
computation times for the refactorisation of the 10 sample matrices are depicted in Figure 8.
It can be seen that the computation times of NICSLU are lower than those of KLU for all
matrices, with computation time speedups in NICSLU ranging from 2.64 to 8.55 compared
to KLU. This is in line with previous findings, e.g., in [3]. Furthermore, it can be seen
that a further speedup of the refactorisation times for all matrices is accomplished when
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PartialNICSLU performs a partial refactorisation based on the factorisation path, which
results in speedups from 7.34 to 49.01 compared to KLU.

1 2 3 4 5 6 7 8 9 10
Matrix no.

10 4

10 3

10 2

10 1

100

Co
m

pu
ta

tio
n 

tim
e 

[s
]

KLU
NICSLU
PartialNICSLU

Figure 8. Refactorisation times for large-scale matrices assuming a ratio of varying matrix entries of 0.1%.

Next, we investigated the impact of an increasing ratio of varying matrix entries. Figure 9
demonstrates that the computation time increases for all matrices with an increasing ratio
of varying matrix entries and that, for the largest ratio of 10%, the computation time of
PartialNICSLU becomes similar to that of NICSLU. This is due to the fact that a variation
of 10% of the rows means that the factorisation path already includes 48% of the entries in
the LU matrix.
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Figure 9. Impact of ratio of varying matrix entries on partial refactorisation times.
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5. Conclusions and Outlook

In real-time simulations with nonlinear component models, numerically varying
system matrices occur and require the recomputation of the LU decomposition in each
simulation step. It is shown that the employment of the NICSLU method accelerates the
refactorisation computation in comparison with both the SuperLU and KLU methods. In
addition, we propose the integration of a partial refactorisation approach into the NICSLU
method by adopting a factorisation path algorithm and show that an additional speedup
was achieved in all considered use cases.

In the presented performance analysis, we cover use cases involving system matrices
of different sizes, a variety of sparsity patterns and different ratios of numerically varying
matrix entries. This allows us to conclude that the proposed high-performance LU decom-
position method can help to meet computation time requirements in a variety of real-time
simulation scenarios.

Furthermore, the application of the NICSLU method leads to a significant speedup
of the solution vector computation in comparison to SuperLU when applying it in a
scenario within the real-time simulator DPsim. Such speedup of the solution step is of
particular relevance in real-time simulation scenarios in which the underlying system
matrix remains constant.

In future work, the proposed method can be extended by a partial RHS solving routine,
which uses a suitable dependency path algorithm similarly as for partial refactorisation
to speed up the solution vector computation. Furthermore, the method can be applied
to various use cases and scenarios for a broader analysis of its benefits and limitations.
The knowledge gained from the analysis can be used for further conceptual and software-
technical improvements of the method and its implementation.
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The following abbreviations are used in this manuscript:

AMD Approximate Minimum Degree Ordering Algorithm
BTF Block triangular form
CSR Compressed sparse row
DAE Differential-algebraic system of equations
DCIM Delayed-current injection method
EMT Electromagnetic transient
HiL Hardware-in-the-loop
LES Linear equation system
MNA Modified nodal analysis
NR Newton–Raphson
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ODE Ordinary differential equation
RHS Right-hand side
SFA Shifted frequency analysis
VBR Voltage-behind-reactance
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