000903018 001__ 903018
000903018 005__ 20240619091917.0
000903018 0247_ $$2doi$$a10.3390/cryst11121482
000903018 0247_ $$2datacite_doi$$a10.34734/FZJ-2021-04747
000903018 0247_ $$2WOS$$aWOS:000736984700001
000903018 037__ $$aFZJ-2021-04747
000903018 082__ $$a540
000903018 1001_ $$0P:(DE-Juel1)131067$$aZorn, Reiner$$b0
000903018 245__ $$aLow Frequency Vibrations and Diffusion in Disordered Polymers Bearing an Intrinsic Microporosity as Revealed by Neutron Scattering
000903018 260__ $$aBasel$$bMDPI$$c2021
000903018 3367_ $$2DRIVER$$aarticle
000903018 3367_ $$2DataCite$$aOutput Types/Journal article
000903018 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1711007353_23853
000903018 3367_ $$2BibTeX$$aARTICLE
000903018 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000903018 3367_ $$00$$2EndNote$$aJournal Article
000903018 520__ $$aThe microscopic diffusion and the low frequency density of states (VDOS) of PIM-EA-TB(CH3) are investigated by inelastic and quasi-elastic neutron scattering where also the demethylated counterpart of PIM-EA-TB(H2) is considered. These intrinsic microporous polymers are characterized by large BET surface area values of several hundred m2/g and pore sizes between 0.5 and 2 nm. Detailed comparison is made to the archetype of polymers of intrinsic microporosity, PIM-1, and polynorbornenes also bearing a microporosity. Due to the wavelength of neutrons, the diffusion and vibrations can be addressed on microscopic length and time scales. From the inelastic neutron scattering experiments the low frequency density of states (VDOS) is estimated which shows excess contributions to the Debye-type VDOS known as Boson peak. It was found that the maximum frequency of the Boson peak decreases with increasing microporosity characterized by the BET surface area. However, besides the BET surface area, additional factors such as the backbone stiffness govern the maximum frequency of the Boson peak. Further the mean squared displacement related to microscopic motions was estimated from elastic fixed window scans. At temperatures above 175 K, the mean squared displacement PIM-EA-TB(CH3) is higher than that for the demethylated counterpart PIM-EA-TB(H2). The additional contribution found for PIM-EA-TB(CH3) is ascribed to the rotation of the methyl group in this polymer because the only difference between the two structures is that PIM-EA-TB(CH3) has methyl groups where PIM-EA-TB(H2) has none. A detailed comparison of the molecular dynamics is also made to that of PIM-1 and the microporous polynorbornene PTCNSi1. The manuscript focuses on the importance of vibrations and the localized molecular mobility characterized by the microscopic diffusion on the gas transport in polymeric separation membranes. In the frame of the random gate model localized fluctuations can open or close bottlenecks between pores to enable the diffusion of gas molecules.
000903018 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000903018 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x1
000903018 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000903018 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
000903018 65017 $$0V:(DE-MLZ)GC-110$$2V:(DE-HGF)$$aEnergy$$x0
000903018 7001_ $$0P:(DE-HGF)0$$aSzymoniak, Paulina$$b1
000903018 7001_ $$0P:(DE-HGF)0$$aKolmangadi, Mohamed A.$$b2
000903018 7001_ $$0P:(DE-HGF)0$$aMalpass-Evans, Richard$$b3
000903018 7001_ $$0P:(DE-HGF)0$$aMcKeown, Neil B.$$b4
000903018 7001_ $$0P:(DE-HGF)0$$aTyagi, Madhusudan$$b5
000903018 7001_ $$0P:(DE-HGF)0$$aBöhning, Martin$$b6
000903018 7001_ $$0P:(DE-HGF)0$$aSchönhals, Andreas$$b7$$eCorresponding author
000903018 773__ $$0PERI:(DE-600)2661516-2$$a10.3390/cryst11121482$$gVol. 11, no. 12, p. 1482 -$$n12$$p1482 -$$tCrystals$$v11$$x2073-4352$$y2021
000903018 8564_ $$uhttps://juser.fz-juelich.de/record/903018/files/crystals-11-01482.pdf$$yOpenAccess
000903018 909CO $$ooai:juser.fz-juelich.de:903018$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000903018 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131067$$aForschungszentrum Jülich$$b0$$kFZJ
000903018 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
000903018 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x1
000903018 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-03
000903018 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000903018 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000903018 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCRYSTALS : 2019$$d2021-02-03
000903018 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-03
000903018 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-03
000903018 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000903018 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-03
000903018 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-03
000903018 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-03
000903018 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000903018 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-02-03
000903018 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-03
000903018 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-03
000903018 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-03
000903018 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-03
000903018 920__ $$lyes
000903018 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x0
000903018 9201_ $$0I:(DE-Juel1)IBI-8-20200312$$kIBI-8$$lNeutronenstreuung und biologische Materie$$x1
000903018 9801_ $$aFullTexts
000903018 980__ $$ajournal
000903018 980__ $$aVDB
000903018 980__ $$aUNRESTRICTED
000903018 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000903018 980__ $$aI:(DE-Juel1)IBI-8-20200312
000903018 981__ $$aI:(DE-Juel1)JCNS-1-20110106