001     903038
005     20250822121514.0
024 7 _ |a 10.1007/s10596-021-10051-4
|2 doi
024 7 _ |a 1420-0597
|2 ISSN
024 7 _ |a 1573-1499
|2 ISSN
024 7 _ |a 2128/29269
|2 Handle
024 7 _ |a WOS:000645878000001
|2 WOS
037 _ _ |a FZJ-2021-04767
082 _ _ |a 550
100 1 _ |a Hokkanen, Jaro
|0 P:(DE-Juel1)179251
|b 0
|e Corresponding author
245 _ _ |a Leveraging HPC accelerator architectures with modern techniques — hydrologic modeling on GPUs with ParFlow
260 _ _ |a Bussum
|c 2021
|b Baltzer Science Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1638373520_8351
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Rapidly changing heterogeneous supercomputer architectures pose a great challenge to many scientific communities trying to leverage the latest technology in high-performance computing. Many existing projects with a long development history have resulted in a large amount of code that is not directly compatible with the latest accelerator architectures. Furthermore, due to limited resources of scientific institutions, developing and maintaining architecture-specific ports is generally unsustainable. In order to adapt to modern accelerator architectures, many projects rely on directive-based programming models or build the codebase tightly around a third-party domain-specific language or library. This introduces external dependencies out of control of the project. The presented paper tackles the issue by proposing a lightweight application-side adaptor layer for compute kernels and memory management resulting in a versatile and inexpensive adaptation of new accelerator architectures with little draw backs. A widely used hydrologic model demonstrates that such an approach pursued more than 20 years ago is still paying off with modern accelerator architectures as demonstrated by a very significant performance gain from NVIDIA A100 GPUs, high developer productivity, and minimally invasive implementation; all while the codebase is kept well maintainable in the long-term.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
536 _ _ |a ATML-X-DEV - ATML Accelerating Devices (ATML-X-DEV)
|0 G:(DE-Juel-1)ATML-X-DEV
|c ATML-X-DEV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Kollet, Stefan
|0 P:(DE-Juel1)151405
|b 1
700 1 _ |a Kraus, Jiri
|0 P:(DE-Juel1)137023
|b 2
700 1 _ |a Herten, Andreas
|0 P:(DE-Juel1)145478
|b 3
700 1 _ |a Hrywniak, Markus
|0 P:(DE-Juel1)180799
|b 4
700 1 _ |a Pleiter, Dirk
|0 P:(DE-Juel1)144441
|b 5
773 _ _ |a 10.1007/s10596-021-10051-4
|g Vol. 25, no. 5, p. 1579 - 1590
|0 PERI:(DE-600)2001545-8
|n 5
|p 1579 - 1590
|t Computational geosciences
|v 25
|y 2021
|x 1420-0597
856 4 _ |u https://juser.fz-juelich.de/record/903038/files/Hokkanen2021_Article_LeveragingHPCAcceleratorArchit.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:903038
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)179251
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)151405
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)137023
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)145478
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)180799
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)144441
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-28
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-28
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b COMPUTAT GEOSCI : 2019
|d 2021-01-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-28
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-28
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Springer Nature 2020
|2 APC
|0 PC:(DE-HGF)0113
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21