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Abstract
Rapidly changing heterogeneous supercomputer architectures pose a great challenge to many scientific communities trying to
leverage the latest technology in high-performance computing. Many existing projects with a long development history have
resulted in a large amount of code that is not directly compatible with the latest accelerator architectures. Furthermore, due to
limited resources of scientific institutions, developing andmaintaining architecture-specific ports is generally unsustainable. In order
to adapt to modern accelerator architectures, many projects rely on directive-based programming models or build the codebase
tightly around a third-party domain-specific language or library. This introduces external dependencies out of control of the project.
The presented paper tackles the issue by proposing a lightweight application-side adaptor layer for compute kernels and memory
management resulting in a versatile and inexpensive adaptation of new accelerator architectures with little draw backs. A widely
used hydrologic model demonstrates that such an approach pursued more than 20 years ago is still paying off with modern
accelerator architectures as demonstrated by a very significant performance gain from NVIDIA A100 GPUs, high developer
productivity, and minimally invasive implementation; all while the codebase is kept well maintainable in the long-term.
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1 Introduction

High-performance computing plays an important role in many
computation-intensive research areas, including physics, earth
sciences, national security, biology, engineering, climate
modeling, aerospace, and energy [1]. However, rapidly devel-
oping accelerator architectures pose a significant challenge to
scientific communities trying to keep up with the technologi-
cal change [2]. In the past, many projects required little chang-
es to scientific codebases due to architectural changes. A

typical scientific program relying on MPI [3] for parallelism
was able to easily leverage the new hardware providing a
larger number of available CPU cores with higher clock
speeds. More recently, the expected ending of Moore’s law
and the growing diversity of hardware accelerators are making
software performance engineering increasingly important [4].

In addition to housing a large number of CPUs, modern
heterogeneous supercomputer setups already often consist of
other processing architectures such as GPUs or (less often)
FPGAs. Benefiting from these accelerator architectures re-
quires not only exposing sufficient parallelism but often also
changes to data structures in order to efficiently exploit the
memory subsystem of the devices in question. It is not uncom-
mon that the codebases have been developed for decades and
consist of hundreds of thousands or even millions of lines of
code [2]. The fundamental assumptions behind the scientific
models change at a much slower pace compared to the
employed hardware architectures, and thus, in the absence of
hardware changes, many of these implementations could pos-
sibly be used for decades to come. Therefore, it is important to

* Jaro Hokkanen
j.hokkanen@fz-juelich.de

1 Agrosphere (IBG-3), Forschungszentrum Jülich GmbH,
Jülich, Germany

2 NVIDIA GmbH, Würselen, Germany
3 Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich

GmbH, Jülich, Germany

https://doi.org/10.1007/s10596-021-10051-4

/ Published online: 1 May 2021

Computational Geosciences (2021) 25:1579–1590

http://crossmark.crossref.org/dialog/?doi=10.1007/s10596-021-10051-4&domain=pdf
http://orcid.org/0000-0003-0010-4718
mailto:j.hokkanen@fz-juelich.de


find a way to efficiently leverage the new hardware develop-
ments with the resources available at the scientific institutions.

The adoption of accelerator architectures is still at an early
phase for many projects, and in contrast to message passing
and MPI, no single overarching standard or programming in-
terface exists. Therefore, it is difficult to predict how to future-
proof the codebase such that the significant investment spent
into adapting the code projects for the current-generation ac-
celeration architectures could also be leveraged with the future
architectures as far as possible.

This paper demonstrates how the proposed forward-
looking practices followed in ParFlow development more
than 20 years ago keep paying dividends even with the most
recent accelerator architectures. It is further argued that it is
not too late even for established projects to follow such a
versatile approach where the dependency on the programming
models used with the current accelerator architectures is min-
imized, and the possibility to extensively leverage the invest-
ment with future architectures is maximized. Furthermore, a
reference implementation is provided wherein GPU capabili-
ties are added into the ParFlow hydrologic model using
CUDA as the backend option of choice. Thus, the presented
study takes up the challenges and suggestions posed by
Lawrence et al. [2] and shows a practical path forward using
the example of a real-world, large-scale scientific codebase.

The text is structured as follows. Section 2 discusses the
common programming models used to add support for accel-
erator architectures. Section 3 briefly presents the ParFlow
embedded domain-specific language, which plays an impor-
tant role in the reference implementation presented in
Section 4. Section 5 evaluates the performance implications
of running ParFlow with GPU acceleration. Finally, conclu-
sions are given in Section 6.

2 Programming models for accelerator
architectures

2.1 Established approaches

In order to leverage accelerator architectures, many scientific
software projects decide to use parallel programming models
such as CUDA, HIP, OpenACC, OpenCL, or OpenMP direct-
ly in the source files dealing with the underlying scientific
problem (i.e. the scientific code). Other projects decide to rely
on domain-specific third-party frameworks (e.g., Firedrake
[5], GridTools [6], and PSyclone [7]) or more general lower-
level libraries (e.g., Alpaka [8], Kokkos [9], and RAJA [10]),
which is commonly referred to as separation of concerns, be-
cause the scientific concerns are separated from concerns re-
lated to the (heterogeneous) massively parallel hardware.

The first approach, herein referred to as the direct
approach, generally allows incremental development and

can provide good productivity and performance. However,
the direct approach introduces external dependencies to the
respective native software stack and usually leads to a signif-
icant amount of code changes. This adds complexity to the
user-facing scientific code which often becomes tightly inte-
grated with the chosen accelerator programming model.

On the other hand, when relying on a third-party frame-
work (separation of concerns), the short-term productivity
highly depends on the intricacies of the chosen framework.
In many cases the short-term productivity may be reduced due
to insufficient flexibility; either too much code rewriting, too
many algorithmic or data structure changes, or inadequate
support for incremental adoption [10]. In contrast to the direct
approach, the separation of the scientific code from the accel-
erator architectures is improved such that benefiting from new
hardware developments, ideally, does not require any changes
to the scientific code after the third-party framework has been
successfully implemented. Furthermore, the codebase is well
maintainable and additional support for future architectures is
outsourced to a third party, which ideally minimizes the long-
term development effort. However, building a large scientific
codebase around a single third-party project also constitutes a
risk; as many third-party options have emerged, it is difficult
to predict which projects will be sustainable in the long-term
and continue to add support for all desired architectures.

2.2 Proposed approach

Herein a third approach inspired by ParFlow is proposed
which aims to combine the best properties of both aforemen-
tioned approaches; a lightweight adaptor layer that provides a
domain-specific interface for the memory management and
compute kernels for the underlying application (Fig. 1).

The intention is to leverage the lightweight adaptor layer to
enable easy accommodation of not only one or more program-
ming models, such as CUDA, HIP, OpenACC, OpenCL, or
OpenMP, but also sufficiently flexible third-party libraries
such as Alpaka, Kokkos, or RAJA. Thus, insourcing develop-
ment to support all required accelerator architectures on the
local backend can be avoided, and the interface for memory
management and looping is independent of the used acceler-
ator programming model allowing full customization in the
underlying scientific domain. Furthermore, the cost of choos-
ing a wrong accelerator programmingmodel is minimized and
adding support for new programming models including librar-
ies is straightforward. A number of pros and cons of the pro-
posed approach are listed below:

+ Separation of concerns
+ Incremental adoption
+ Flexibility with algorithms and data structures
+ Fully customizable interface for compute kernels and

memory management
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+ Codebase remains well maintainable
+ Easy adoption of one or more accelerator programming

models or libraries
+ Cost of choosing a “wrong” programming model or

library is minimized
– Development and implementation of a lightweight

adaptor layer
– Compatibility of the adaptor layer with all future

backends is not guaranteed

3 ParFlow embedded domain-specific
language

ParFlow has a long development history dating back to the
1990s [11]. Hydrologic problems such as groundwater and
overland flow are modeled using finite difference and finite
volume schemes on a regular Cartesian grid [12–14]. The time
integration is based on implicit methods, which requires find-
ing solutions for large systems of equations. In order to solve
the discretized problem in parallel on a distributed memory
system such as a modern supercomputer, the computational
domain is decomposed into multiple subdomains. However,
the computations associated with each subdomain are not in-
dependent of each other due to the stencil operations of the
flow problem which require each cell in the grid to commu-
nicate with its neighbors.

If the neighboring cell is found from another subdomain,
cross-subdomain communication is required. This commu-
nication pattern is generally referred to as the halo exchange
and relies on MPI such that each subdomain is associated
with anMPI process. In addition to distributed memory par-
allelism (multiple nodes), ParFlow usesMPI also in place of
sharedmemory parallelism (multiple cores on a single node).

The domain decomposition and message passing require-
ments pose significant hardware architecture complexities in
the implementation. For a scientific programmer developing
numerical methods this may be cumbersome and error-prone.
In ParFlow, the scientific code relies on a high-level API pro-
vided by the ParFlow embedded domain-specific language
(ParFlow eDSL) which abstracts away the architecturally im-
posed complexities. Many operations such as allocations and
initializations (Listing 1), data accesses (Listing 2), message
passing (Listing 3), and compute kernels (Listing 4) are
accessed through the eDSL API which is mostly comprised
of C preprocessor macros.

Listing 1: Allocation and initialization.

KW = NewVectorType(grid2d, 1, 1, cell_centered);
InitVector(KW, 0.0);

Listing 2: Data access.

ix = SubgridIX(subgrid);
iy = SubgridIY(subgrid);
iz = SubgridIZ(subgrid);

Listing 3: Message passing.

vector_update_handle
= InitVectorUpdate(pressure, VectorUpdateAll);

FinalizeVectorUpdate(vector_update_handle);

Listing 4: Loops.

GrGeomInLoop(i, j, k, gr, r, ix, iy, iz, nx, ny, nz,
{

int ips = SubvectorEltIndex(ps_sub, i, j, k);
data[ips] = value;

});

Similarly to the domain decomposition and message passing,
adding support for modern accelerator architectures further com-
plicates the implementation. The currently available accelerator
devices are typically designed for parallel computations using an
internal device memory. Therefore, memory management and
parallelizable compute kernels are of particular concern regard-
ing the implementation. Fortunately for ParFlow, memory man-
agement and compute kernels are accessed through the ParFlow
eDSL, thus, constituting an ideal layer for adding the support for

Fig. 1 A lightweight adaptor layer for accelerator programming models
and libraries
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the accelerator architectures.

4 Real-world example: Adding GPU-support
into ParFlow eDSL

This section provides a detailed description of the work per-
formed to add GPU support into the ParFlow eDSL using
CUDA. This may serve as a blueprint for other projects de-
veloping a strategy to add support for new architectures into
their codebases. Even projects which do not already have a
suitable adaptor layer in place may benefit from the proposed
approach, because it may be relatively easy to separate the
code dealing with GPUs.

It is important to note that the ParFlow implementation to
support GPUs heavily leverages Unified Memory. Unified
Memory allocations are accessible by the CPU (host) and
the GPU (device). This is achieved by automatically migrating
data at the level of individual pages depending on where the
data is accessed. It thus allows using the same pointer in host
and device code paths. The benefits include a significant de-
crease in the development effort, and a less invasive and com-
plex implementation.

The code dealing with compute kernels is built directly into
the preprocessor macros of the ParFlow eDSL such that the
macro definitions depend on the chosen architecture (or the
chosen accelerator programming model). Most changes due
to accelerator support are associated with the header files for
macros and the message passing layer, and therefore, few
changes to the scientific code are required. The following sub-
sections provide a representative view of the GPU implemen-
tation and development effort using slightly simplified exam-
ples from the ParFlow codebase. The different steps encompass
the compilation process, GPU affinity, memory management,
loop parallelism, andGPU-GPUmessage passing. An addition-
al subsection describes profiling and optimization procedures,
which are essential components of the implementation. The full
ParFlow codebase is available in a public repository at https://
github.com/parflow (last access: 27th October 2020).

4.1 Compilation process

In order to build a project with CUDA, the first step is to set up
the build configuration accordingly. In ParFlow, the compila-
tion process is controlled by CMake. Compiling with GPU
support is optional and can be enabled by passing an argument
to CMake when configuring the project. If GPU acceleration
is enabled, CMake performs the following additional tasks:

& Find CUDA installation
& Set CUDA host compiler
& Define CUDA compiler arguments

& Find CUDA-specific external libraries (CUB, RMM)
& Assign correct source files to the CUDA compiler

4.2 GPU affinity

Modern supercomputers typically consist of large numbers of
nodes which may have multiple GPUs available. For a program
such as ParFlow which originally relies solely on a message
passing library for parallelism, the best option often is to launch
the same number of processes as there are GPUs intended to be
used. Each process then uses only one GPU and the communi-
cation between GPUs relies on a CUDA-awareMPI library that
supports direct GPU-GPU data transfers. The correct GPU de-
vice for each process can then be determined using Listing 5

Listing 5: Determination of the correct GPU device.
Further optimization of GPU placement for halo exchange
would be possible but is not covered in this paper.

cudaSetDevice(node_local_rank % local_num_devices);

where node_local_rank and local_num_devices are the node-
local rank of the process and the number of GPUs associated
with the corresponding node, respectively. In the early phase
of accelerating a legacy application often significant portions
of the runtime are still spent in MPI parallel CPU only code
paths. In this case, it is beneficial to exploit the MPI parallel-
ism in these CPU code paths by launching more MPI process-
es per node as there are GPUs and share each GPU between
multiple MPI ranks via CUDA Multi-Process Service (MPS).

4.3 Memory management

As the physical memory spaces between the host and the
devices are separated, it is essential to make sure that the
relevant stored data is accessible for each device. With the
current CUDA version, this means replacing the standard host
memory allocations and deallocations by the functions pro-
vided by the CUDA toolkit. While the CUDA API provides
means to allocate memory on the host-side such that the de-
vice can access this data directly through the PCI Express bus
or NVLink, storing the data in the device memory is usually
more efficient. This is achieved by the CUDA functions
cudaMalloc and cudaMallocManaged for device-pinned and
Unified Memory allocations, respectively. Furthermore,
cudaFree must be used for deallocations.

One drawback of simply replacing the required standard
host memory allocations by a call to cudaMallocManaged is
the significantly increased memory allocation overhead. This
may cause a problem in case of recurring allocations and
deallocations. For this reason, ParFlow supports using
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Rapids Memory Manager (RMM) for Unified Memory allo-
cations. Instead of calling cudaMallocManaged directly, a
function rmmAlloc provided by the RMMAPI is called which
then calls cudaMallocManaged internally. RMM provides a
pool allocation mode in which the memory pool is
prefetched to the device and the memory is never
deallocated while the pool is in use and allowed to grow.
A call to rmmFree makes room for new allocations with-
out decreasing the pool size. This removes the overhead
of recurring Unified Memory allocations without a con-
siderable increase in peak memory usage (although the
average memory consumption is increased). The perfor-
mance impact is shown in Section 5.

In ParFlow, dynamic memory allocation is handled by the
eDSL preprocessor macros talloc or ctalloc as shown in
Listing 6 for a Vector type.

Listing 6: ParFlow dynamic memory allocation.

vector = talloc(Vector, 1);

For a normal host memory allocation, the preprocessor
simply replaces talloc by a call to malloc (Listing 7). If
ParFlow is compiled without GPU acceleration, this is always
the case. In case of a UnifiedMemory allocation, a static inline
function _talloc_cuda is called which then calls either
cudaMallocManaged or rmmAlloc (depending on if ParFlow
is compiled with the RMM library) as shown in Listing 8.

Listing 7: ParFlow eDSL host memory allocation.

#define talloc(type, count) \
(type*)malloc(sizeof(type)

* (unsigned int)(count))

Listing 8: ParFlow eDSL device memory allocation.

#define talloc(type, count) \
(type*)_talloc_cuda(sizeof(type) \

* (unsigned int)(count))

static inline void *_talloc_cuda(size_t size)
{

void *ptr = NULL;
#ifdef PARFLOW_HAVE_RMM

rmmAlloc(&ptr, size, 0, __FILE__, __LINE__);
#else

cudaMallocManaged(&ptr, size);
#endif

return ptr;
}

Similarly, the memory is deallocated using the preproces-
sor macro tfree as shown in Listing 9.

Listing 9: ParFlow dynamic memory deallocation.

tfree(vector);

Listings 10 and 11 show the correspondingmacro definitions
for host memory and Unified Memory deallocations. The mem-
ory allocated using malloc, cudaMallocManaged, or rmmAlloc
is deallocated using free, cudaFree, or rmmFree, respectively.

Listing 10: ParFlow eDSL host memory deallocation.

#define tfree(ptr) free(ptr)

Listing 11: ParFlow eDSL device memory deallocation.

#define tfree(ptr) _tfree_cuda(ptr)

static inline void _tfree_cuda(void *ptr)
{
#ifdef PARFLOW_HAVE_RMM

rmmFree(ptr, 0, __FILE__, __LINE__);
#else

cudaFree(ptr);
#endif
}

Due to performance reasons, Unified Memory allocations are
only used in those compilation units where they are actually
needed, thus the behavior of tallocmay differ between the com-
pilation units (the term compilation unit, also called translation
unit, herein refers to the input for a compiler fromwhich an object
file is generated). An important consequence of this is that each
memory allocation and the corresponding deallocation must be
contained within compilation units using the same macro defini-
tions (preferably the same compilation unit) such that each allo-
cation call is eventually followed by the correct deallocation call.

4.4 Loops

In ParFlow, loops over the discretized domain are always
accessed through the eDSL API. Similarly to memory manage-
ment, the loop execution is defined by preprocessor macros.
However, only a few general loop macros are provided for
which the loop body is given as a macro argument. In
ParFlow, the loop body is typically provided as the last argument
to the macro, e.g., in Listing 12 the loop body refers to the
contents within the curly brackets. This approach allows using
the same loop macro for a large number of loops with different
loop logic and a varying number of variables required by the
loop. In fact, there are over one hundred loops with often very
different loop bodies that use a single loop macro in ParFlow.

The definitions for the loopmacros depend onwhether they are
executed on the host or the device. For example, the loop macro
used in Listing 12 has been defined for a sequential execution on
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the host and for a parallel execution on the device in Listings 13
and 14, respectively. The sequential definition is straightforward
as the loop body is just placed inside the innermost loop in the
macro definition. However, in the parallel version, a GPU kernel
must be launched forwhich the loop bodymacro argument cannot
be directly passed. Instead, a relatively newCUDA feature known
as extended host-device lambda is used to pass the loop body to
the GPU kernel. The loop body macro argument is placed inside
the lambda function such that the lambda function contains all
required information about the loop logic; the variables found
inside the loop body are captured by their value. Now all required
information about the loop body can be passed to the GPU kernel
as a single argument, i.e., the lambda function.

Listing 12: BoxLoopI0: a simple loop over the
discretized domain.

double *fp;
double *pp;
double value;
Subvector *f_sub;

/* some code missing here */

BoxLoopI0(i, j, k, ix, iy, iz, nx, ny, nz,
{

int ip = SubvectorEltIndex(f_sub, i, j, k);
fp[ip] = pp[ip] - value;

});

Listing 13: BoxLoopI0 macro definition for sequential
execution on the host.

#define BoxLoopI0(i, j, k, ix, iy, iz, \
nx, ny, nz, loop_body) \

{ \
for (k = iz; k < iz + nz; k++) \

for (j = iy; j < iy + ny; j++) \
for (i = ix; i < ix + nx; i++) \
{ \

loop_body; \
} \

}

Listing 14: BoxLoopI0 macro definition for parallel ex-
ecution on the device.

#define BoxLoopI0(i, j, k, ix, iy, iz, \
nx, ny, nz, loop_body) \

{ \
auto lambda_body = [=] __host__ __device__ \

(const int i, const int j, const int k) \
loop_body; \

\
/* some code missing for grid & block sizes */ \

\
BoxKernelI0<<<grid, block>>>(lambda_body, \

ix, iy, iz, nx, ny, nz); \
}

Listing 15 shows the general GPU kernel launched by the
macro definition in Listing 14, which takes the aforemen-
tioned extended host-device lambda function as an argument.
Apart from determining the correct thread indices i, j, and k,
the kernel only calls the lambda function by passing the cor-
responding thread indices as arguments to the lambda func-
tion.

Listing 15: A general GPU kernel used by the
BoxLoopI0 macro.

template <typename LambdaBody>
__global__ static void BoxKernelI0(

LambdaBody loop_body,
const int ix, const int iy, const int iz,
const int nx, const int ny, const int nz)

{
int i = ((blockIdx.x * blockDim.x) + threadIdx.x);
int j = ((blockIdx.y * blockDim.y) + threadIdx.y);
int k = ((blockIdx.z * blockDim.z) + threadIdx.z);

if(i < nx && j < ny && k < nz)
{

i += ix;
j += iy;
k += iz;
loop_body(i, j, k);

}
}

The kernel in Listing 15 is used for the basic three-
dimensional parallel for loop type in ParFlow. Parallel
reduction loops use more complex (but still general) GPU
kernel. The described approach allows incremental develop-
ment and easy parallelization of a large number of compute
kernels, while minimizing the amount of new code. However,
it is important to note that the parallel loop macros pose some
additional restrictions to the loop body; the most common
restrictions are listed below:

& Host variables defined outside the loop body cannot be
changed

& Pointers must point to Unified Memory allocations
& Functions called inside the loop body must have __host__

__device__ identifier
& Operations causing race conditions (e.g. increment) must

use atomic functions

4.5 GPU-GPU message passing

Most of the recurring intra-node and inter-node communica-
tions between the processes such as the halo exchange involve
data that is stored on a GPU and needed by another GPU.
Therefore, efficient data transfer between GPUs on a node
and also across nodes is important. The data could be copied
from a GPU to a staging buffer on the host, then transferred to
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the host staging buffer of another process using a message
passing library, and finally copied back to a GPU device. In
this case, the choice of the accelerator architecture would not
pose any requirements for the message passing library, but the
resulting performance would be bad due to many unnecessary
operations that are not properly pipelined.

Better performance can be obtained by leveraging direct
GPU-GPU communication such as NVIDIA GPUDirect or
AMD DirectGMA. For example, GPUDirect Peer-to-Peer
(P2P) and Remote Direct Memory Access (RDMA) enable
direct data transfers between two GPUs (intra-node) and a
GPU and a network adapter (inter-node), respectively.
However, usage of these technologies requires additional sup-
port from the message passing library. For example, at the
Jülich Supercomputing Centre, Germany, ParFlow is fre-
quently run with MVAPICH2-GDR and Parastation MPI
which both support GPUDirect P2P and RDMA, and are often
referred to as CUDA-aware MPI libraries.

The default message passing option in ParFlow relies on
derived MPI datatypes and MPI library-side data packing and
unpacking. When this message passing option is used with
GPU acceleration, the pointers passed to the MPI library point
to Unified Memory allocations. However, the authors found
no CUDA-aware MPI library which would pack and unpack
the data for the underlying MPI data type on the GPU, and
leverage the fast GPUDirect data transfers. After
implementing optimized GPU kernels for application-side da-
ta packing and unpacking, and using a simple MPI_BYTE
data type, efficient GPUDirect data transfers were
leverageable with both aforementioned CUDA-aware MPI
libraries, MVAPICH2-GDR and Parastation MPI.

When using GPU acceleration in ParFlow, the application-
side data packing and unpacking for each process is per-
formed in multiple streams on a GPU using a pinned GPU
staging buffer; a pointer to this staging buffer is then passed to
the MPI library. Using pinned GPU memory instead of
Unified Memory for the staging buffers typically results in
better performance because the MPI library must internally
use a pinned buffer anyway (GPUDirect data transfers do
not support Unified Memory).

The changes required to leverageGPU-GPUmessage pass-
ing have been implemented into the message passing layer of
ParFlow which is not solely based on preprocessor macros but
is instead compiled as a separate library.

4.6 Profiling & Optimization

In the implementation of the GPU support in ParFlow, the
GPU utilization during runtime was monitored with various
NVIDIA profiling tools such as Visual Profiler, Nsight
Systems, and Nsight Compute. In ParFlow, a large number
of compute kernels is found, none of which clearly dominate
the wall time. The parallelization of these compute kernels

was performed with the help of profiler output one compila-
tion unit at a time. No architecture-specific optimizations were
introduced into the loop body macro arguments (cf.
Section 4.4) which are shared between the host and device
compilation paths.

Little performance improvement was realized until most of
the frequently executed loops were offloaded to the GPUs.
This is explained by page faults and recurring data migrations
between the host and device along the PCI Express bus or
NVLink. When a virtual page is accessed that is not mapped
to a physical page on the memory of the underlying process-
ing unit, a page fault is generated. The issue is resolved during
the runtime by locating and copying the data and remapping
the virtual page to the corresponding physical page such that it
is now accessible to the processing unit in question. This is
referred to as on-demand paging and is supported on the GPU-
side since the NVIDIA Pascal architecture; for older NVIDIA
architectures, all Unified Memory is always migrated to the
device memory prior to launching a GPU kernel.

The single most important part of the optimization was to
minimize the page faults and avoid recurring memory trans-
fers between host and device. This was mostly achieved by
offloading all loops accessing the same data to the GPUs
therefore minimizing the need to migrate pages to the host
memory.

CUDA also offers functions cudaMemAdvise and
cudaMemPrefetchAsync, which can be used to provide infor-
mation about the memory usage, or to prefetch data to the
desired location, respectively. Unfortunately, the employed
adaptor layer is not aware of the individual pointers captured
by the extended host-device lambda functions. Therefore, it is
difficult to embed these into the ParFlow eDSL without modi-
fying the scientific code, and thusmemory advise or prefetching
are not extensively used in the implementation. However, this is
not a significant drawback, because the corresponding data is
mostly accessed from the GPUs in the first place.

Due to the incremental approach for development, all com-
pute kernels were initially parallelized using a simple parallel
for construct and race conditions were handled using atomic
functions. However, this is a very ineffective strategy for cer-
tain types of compute kernels such as reduction kernels where
the execution becomes highly sequential. Efficient parallel
reduction kernels that leverage the CUB (CUDA Unbound)
header-only library were, thus, added to the ParFlow eDSL.

ParFlow is memory parsimonious, thus, memory is fre-
quently allocated and deallocated in loops. However, allocat-
ing and deallocating Unified Memory leads to significantly
higher overhead than the standard host memory allocation.
Therefore, a pool allocator (Rapids Memory Manager) is sup-
ported as described in Section 4.3, resulting in considerably
better performance (see Section 5). The trade-off is increased
average memory consumption without a considerable increase
in peak memory usage.
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Another high priority memory optimization is coalesc-
ing the global device memory accesses. Considering the
architectures starting from Pascal, the global memory is
accessed in transactions of 32 bytes in size. If a warp of
32 threads executing the same instruction accesses a 32-
byte aligned array of 128 bytes, only a maximum of 4
global memory transactions are required. This is the case
for example when k-th thread within a warp accesses the
k-th 4-byte integer of a 32-byte aligned array. In case the
array is not aligned, 5 transactions are required. On the
other hand, for a strided array with the stride size larger
than 32 bytes, each thread requires a separate transaction
resulting in a total of 32 transactions. In ParFlow, the data
along the x-dimension of the domain is typically stored in
consecutive memory locations. Therefore, mapping this
dimension to the x-dimension of a three-dimensional grid
of a GPU kernel results in an ideal memory access pattern
for non-strided arrays.

With CUDA, multiple GPU kernels can run concurrently
while the CPU is performing other tasks. Therefore, better
performance is achieved when the number of synchroniza-
tions between host and device are minimized. Generally, the
CPU does not need to wait for a GPU kernel to finish imme-
diately after launching a kernel and can instead continue the
program execution also queuing more GPU kernels for exe-
cution. However, a synchronization is required before the
CPU accesses data that is relevant for the device kernels.
Unfortunately, in ParFlow, the adaptor layer is not aware of
the program control flow of the scientific code and does not
know when synchronizations are needed. Therefore, as a de-
fault option, cudaStreamSynchronize is called after each ker-
nel launch guaranteeing that the CPU does not continue before
the kernel is finished. However, an option to prevent synchro-
nization after a kernel launch is provided by the API for ad-
vanced users, and is used for the most benefiting code regions.

The last optimization considered herein is the kernel launch
configuration. For optimal computing efficiency and memory
coalescing, the number of threads per block should be a multi-
ple of warp size (32 threads for the currently available NVIDIA
architectures). In ParFlow, the block size for the x-dimension is
currently set to 32 for best memory coalescing, while the block
sizes for y- and z-dimensions are dynamically adjusted based
on the problem size. However, optimizing the block sizes did
not have a significant impact on the performance.

The discussed optimizations are listed below in descending
order according to their impact on the whole-program perfor-
mance. It is also indicated whether the impact was small or
large.

& Minimizing data transfers between host and device
(large impact)

& Adding efficient parallel reduction kernels
(large impact)

& Using a pool allocator for Unified Memory
(large impact)

& Coalescing global device memory accesses
(large impact)

& Avoiding unnecessary synchronizations
(small impact)

& Tweaking with kernel launch configurations
(small impact)

5 Performance

If the computational efficiency is the only concern, the best
results are usually achieved by rewriting and optimizing a
significant portion of the codebase for each desired architec-
ture from scratch. However, this approach often leads to mul-
tiple ports and is too expensive and time consuming for most
projects. The proposed approach of using an adaptor layer that
provides an API for generalized loop types overcomes this
problem at the cost of slightly reducing the achievable level
of optimization. Nevertheless, the developed GPU support for
ParFlow that is discussed in Section 4 shows good perfor-
mance gains from using GPU accelerators. A representative
benchmark problem was run on the booster module1 of the
JUWELS supercomputer where each utilized node is equipped
with dual AMDEPYCRome 7402 processors (2 × 24 cores@
2.8 GHz) and 4 NVIDIA A100 40 GB GPUs. The nodes are
connected through 4HDR200-InfiniBand devices. It is expect-
ed that more HPC systems in the near future are adopting a
design similar to that of JUWELS Booster (around 50 CPU
cores and 4 GPU devices per node).

The benchmark consists of a variably saturated infiltration
problem into a homogeneous soil with a fixed water table at a
depth of 6 m, and a constant infiltration rate of 8 × 10−4 m /
hour. The vertical and lateral spatial discretization was 0.025
and 1 m, respectively. The time step size was 1 h. The profile
was initialized with a hydrostatic profile based on a matric
potential of −9 m at the top resulting in a considerable initial
hydrodynamic disequilibrium with respect to the water table at
the bottom boundary. The number of grid cells in the lateral
directions was varied to change the total number of degrees of
freedom in performance testing. The system of equations
formed from the nonlinear problem is solved for each iteration
at each time step using the GMRES method along with the
ParFlow internal multigrid preconditioner. The input file for
the benchmark problem is available in the ParFlow repository.2

The reference results were obtained without accelerator
devices by launching an MPI process for each CPU core. In

1 JUWELS Booster is based on the Atos XH2000 technology [15].
2 https: //github.com/parflow/parflow/blob/974c7bb98061fbf52
bfcce3e0518d48854b28293/test/tcl/clayL.tcl
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the case of the accelerated runs, 4 MPI processes per node
were launched such that each process uses one GPU and the
halo exchange leverages GPU-based application-side data
packing (unpacking) before (after) the MPI communication
takes place. The simulation results between accelerated and
non-accelerated simulations are not bit-identical due to
floating-point operations which are conducted in a different
order. However, the difference is negligible not only for
the presented benchmark problem and several other real-
world applications but also for more than one hundred auto-
mated tests cases that are run frequently to validate the
implementation.

The first test evaluates the impact of using GPU accelera-
tors considering only a single node (Fig. 2). The problem size
was varied between 1442 × 240 and 10082 × 240 cells (hori-
zontal axis). The upper value for the number of cells was
limited by the available GPU memory (4 × 40 GB). The left
vertical axis in Fig. 2 represents a performance metric (marked
by lines) simply referred to as performance which is obtained
by dividing the number of cells by a representative timing
index. The performance is plotted for GPU accelerated runs
with and without the pool allocator (RMM library) for Unified
Memory (see Section 4.3). The impact of using the pool allo-
cator increases with the increasing number of cells and more
than triples the performance for the largest problem sizes.
However, the non-accelerated simulation could also benefit
from a pool allocator (although to a much lesser extent), but
testing was not possible due to non-existent implementation.
The right vertical axis represents the relative performance
(marked by circles), i.e., the ratio between the performance

metrics of the non-accelerated and accelerated simulations
with values >1 indicating faster execution of the accelerated
simulation. With the pool allocator, the relative performance
increases with the growing number of cells from ∼5 (for
1442 × 240 cells) to ∼29 (for 10082 × 240 cells). The plot fur-
ther suggests that even better performance could be achieved
with GPUs providing more memory capacity, although with
diminishing returns. Furthermore, the accelerated simulation
with 10082 × 240 cells corresponds to a non-accelerated sim-
ulation with less than 1962 × 240 cells when requiring a sim-
ilar progression speed (i.e. matching the timing indices). This
suggests that per-node problem sizes even on the order of 108

cells become suitable for real-world use cases when leverag-
ing the latest GPUs with sufficient memory capacity.

In the second test, the weak scaling behavior for 1, 4, 16, 64,
and 256 nodes with a fixed number of cells (10082 × 240) per
node is studied resulting in more than 62 billion cells for 256
nodes (Fig. 3). Again, the left vertical axis denotes the perfor-
mance (marked by lines), and the right vertical axis the relative
performance (marked by circles). The relative performance
shows a sharp initial drop when increasing the number of nodes
from one to four. The accelerated version splits the domain into
four subdomains per node whereas the non-accelerated version
splits into 48. In both cases, the domain is split only along the
horizontal dimensions of the three-dimensional domain.
Therefore, when running on a single node, the halo exchange
involves at most two faces of each subdomain for the accelerated
simulation as there is no halo exchange along the outer boundary.
With the non-accelerated simulation, the domain is split into 48
subdomains and for the interior subdomains that do not

Fig. 2 Single node performance
comparison
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contribute to the outer boundary, the halo exchange involves all
four faces resulting in proportionally higher communication
overhead. However, the GPU accelerated simulation dispropor-
tionately benefits from this only when running on a single node.
According to Fig. 3, the relative performance is roughly constant
between 16 and 256 nodes at ∼26 suggesting very good weak
scaling performance.

Finally, it is noted that the relative performance of ∼26
achieved in the weak scaling study on multiple nodes may rep-
resent a more meaningful metric of the performance gain from
using GPUs, because the proportionally higher communication
overhead in the non-accelerated single-node simulation vanishes
when the number of nodes is increased. It is also emphasized that
the achievable speedup is highly dependent on the underlying
problem, numerical methods, and implementation. Therefore, it
is difficult to make accurate generally applicable predictions
based on the results from a single project.

6 Conclusions and recommendations

In order for scientific codebases to benefit from the rapidly de-
veloping accelerator architectures, an application-side adaptor
layer is proposed for accommodating the accelerator program-
ming models or libraries instead of using the third-party inter-
faces directly throughout the codebase. For example, in a C
project this adaptor layer could be based on preprocessormacros,
whereas in a project based on C++ the interface could directly
leverage more advanced features such as templates, function
objects, and lambda functions. As a result, the scientific code

can be easily separated from the architecture-dependent code
achieving the desired attributes for separation of concerns.

The ParFlow reference implementation employs an adaptor
layer which consists of architecture-dependent preprocessor
macros for memory management and compute kernels (see
Appendix A for a complete Hello World example program
with macro definitions for sequential execution on the CPU
and parallel execution on the GPU). During the compilation
process, the correct set of macros is chosen based on the target
architecture. These preprocessor macros form a part of
ParFlow embedded domain-specific language (ParFlow
eDSL) which is used for many operations such as allocations
and initializations, message passing, and looping. However,
having a comprehensive domain-specific language already in
place is by no means a prerequisite; only a minimal interface
for memory management and the relevant compute kernels is
often enough to benefit from this approach. Using preproces-
sor macros results in a good performance and is compatible
with lower-level languages such as C, but can obfuscate code
for debuggers and compiler diagnostics.

The proposed approach of using an adaptor layer that pro-
vides a domain-specific interface for generalized loop types
allows less custom optimization for each compute kernel, but
at the same time provides a versatile and inexpensive adapta-
tion of new accelerator architectures. In contrast to more gen-
eral third-party frameworks, a relatively simple scaled-down
adaptor layer may suffice as only the features required by the
underlying application must be supported. Nevertheless, a
good starting point for an adaptor layer for a C++ project
can be obtained by studying the interfaces of libraries such

Fig. 3 Weak scaling comparison
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as Alpaka, Kokkos, and RAJA with well-proven and thought-
out designs; these libraries also serve as ideal backend candi-
dates to target multiple architectures at once.

It is emphasized that a large portion of the development effort
is transferred into the development of the adaptor layer which is
very likely utilizablewith future architectures; thismay not be the
case with many other approaches if the codebase is built tightly
around an accelerator programming model or library that be-
comes obsolete. The aforementioned claim about utilizability is
strongly supported by the ParFlow eDSL of which development
started more than 20 years ago, and which now serves as the
adaptor layer for modern-day accelerators; the reference imple-
mentation discussed in Section 4 demonstrates that a significant
performance gain, high developer productivity, and minimally
invasive implementation are all achievable at the same timewhile
keeping the codebase well maintainable in the long-term.

The performance evaluation in Section 5 demonstrates good
scaling across a large number of nodes with ∼26 times increase
in the performance from using GPU accelerators. The develop-
ment effort for the presented ParFlow reference implementation
was several months for a single full-time developer with no
prior experience of the underlying codebase. However, in a
general case, the development time estimate is highly depen-
dent on the underlying codebase, especially the implementation
of the data structures and compute kernels. It is concluded on a
positive note, and perhaps somewhat contrary to the message of
Lawrence et al. [2] that also relatively small developer groups
have a good chance of achieving performance portability with
their codebase in a reasonable time frame.

Acknowledgements The work described in this paper has received funding
from the Helmholtz Association (HGF) through the project “Advanced Earth
System Modeling Capacity (ESM) and the Pilot Laboratory Exa-ESM. The
authors gratefully acknowledge the computing time granted through the ESM
test partition on the supercomputer JUWELS at the Jülich Supercomputing
Centre, Forschungszentrum Jülich, Germany. The authors also gratefully
acknowledge support from the EuropeanCommissionHorizon 2020 research
and innovation program under Grant Agreement No. 824158 (EoCoE-II).
Furthermore, NVIDIA Application Lab at the Jülich Supercomputing
Centre is thanked for technical support regarding the CUDA implementation.
Finally, the foundations for the ParFlow eDSL were laid by Steven Smith,
Rob Falgout, and Chuck Baldwin, all from Lawrence Livermore National
Laboratory, USA.

Code availability ParFlow source code is covered by the GNU Lesser
General Public License and is available in a public repository at https://
github.com/parflow (last access: 27th October 2020). The commit
974c7bb dated 21st October 2020 was used in this paper.

Author contributions Jaro Hokkanen performed the technical develop-
ments, analyses, and wrote the manuscript; Stefan Kollet advised on
ParFlow technical issues, contributed to the analyses, and co-wrote the man-
uscript; Jiri Kraus, AndreasHerten, andMarkusHrywniak provided technical
support regarding the implementation, optimization, and the HPC environ-
ment; Dirk Pleiter contributed to the analyses and the manuscript.

Funding Open Access funding enabled and organized by Projekt DEAL.

Declarations

Conflict of interest The authors declare that there is no conflict of interest.

Appendix A

A Hello World example program
#include <stdio.h>

/* Kernel macro selection (CPU/GPU) */
// #define BoxLoop BoxLoopCPU
#define BoxLoop BoxLoopGPU

/* Compute kernel macro for CPU (API) */
#define BoxLoopCPU(i, nx, loop_body) \

\{
for \)++i;xn<i;0=i(

\{
\;ydob_pool
\}

}

/* Compute kernel macro for GPU (API) */
#define BoxLoopGPU(i, nx, loop_body) \

\{
auto lambda = [=] __host__ __device__ (int i) \

\{
\;ydob_pool
\;}
\

int \;4201=eziskcolb
int gridsize = (nx - 1 + blocksize) / blocksize; \

\
_BoxKernel<<<gridsize, blocksize>>>(lambda, nx); \

\;)0(ezinorhcnySmaertSaduc
(void \;i)

}

/* General GPU kernel */
template <typename LambdaBody> __global__ static
void _BoxKernel(LambdaBody lambda, const int nx)
{

const int i =
blockIdx.x * blockDim.x + threadIdx.x;

if(i < nx)
{

lambda(i);
}

}

/* Memory allocation macro (API) */
#define \)tnuoc,epyt(deganam_colla

(type*)_alloc_managed(count * sizeof(type));

//* Function to allocate Unified Memory */
static inline void *_alloc_managed(size_t size)
{

void *ptr = NULL;
cudaMallocManaged((void**)&ptr, size);
return ptr;

}

/* Memory deallocation macro (API) */
#define free_managed(ptr) _free_managed_cuda(ptr);

/* Function to deallocate Unified Memory */
static inline void _free_managed_cuda(void *ptr)
{

cudaFree(ptr);
}
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/* Driver function */
int main(int argc, char *argv [])
{

int i, nx = 10;
int* array = alloc_managed(int, nx);

BoxLoop(i, nx,
{

array[i] = i;
});

BoxLoop(i, nx,
{

int thread = array[i];
printf("Hello from GPU thread %d\n", thread);

});

free_managed(array);
}
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