001     903044
005     20220103172052.0
024 7 _ |a 10.1007/s42729-020-00407-7
|2 doi
024 7 _ |a 0717-635X
|2 ISSN
024 7 _ |a 0718-2791
|2 ISSN
024 7 _ |a 0718-9508
|2 ISSN
024 7 _ |a 0718-9516
|2 ISSN
024 7 _ |a 2128/29301
|2 Handle
024 7 _ |a WOS:000606237800003
|2 WOS
037 _ _ |a FZJ-2021-04773
082 _ _ |a 570
100 1 _ |a Redel, Yonathan
|0 0000-0002-1259-2774
|b 0
|e Corresponding author
245 _ _ |a Long-Term Compost Application and the Impact of Soil P Legacy on the Enhancement of Early Maize Growth
260 _ _ |a [Cham]
|c 2021
|b Springer International Publishing
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1638512337_18868
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Throughout the world, compost application is viewed as a long-term strategy to improve the availability of phosphorus (P) for agricultural crops. Limited information is available on the legacy effects of P in compost-amended soils with respect to the subsequent effects of mineral P fertilizer on crop growth. We therefore conducted two cycles of maize growth experiments in pots (replicates; n = 4) under greenhouse conditions, with each cycle lasting 84 days. We used two soils that had been fertilized with compost over the past 10 years. The first cycle of maize growth was carried out under full P fertilization conditions, i.e. 150 mg P kg−1 soil (300 kg P ha−1), as calcium dihydrogen phosphate. The second cycle of maize was grown in the same soil and pots after harvesting the first cycle. Plant and soil measurements included soil Hedley P fractions and plant P uptake. Readily available plant P NaHCO3-Pi ranged from 93 to 221 mg P kg−1, increasing by 31% due to compost and 76% due to Ca-P fertilization compared with no compost or Ca–P fertilization, respectively. However, the application of compost and fertilizer only increased the production of dry matter by 7–9%, and plant P uptake by 11% and 17% compared to previous compost and Ca–P applications, respectively. Compost protected against the depletion of the NaHCO3–Po pool and was therefore helpful to initiating a P legacy stock, enhancing soil resilience and limiting the depletion of P by future crop rotations with high P requirements. However, compost mixed with mineral P provided the best availability of P for both immediate crop requirements and the long-term preservation of soil fertility.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Kunz, Elena
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Hartmann, Tobias E.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Müller, Torsten
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Bol, Roland
|0 P:(DE-Juel1)145865
|b 4
773 _ _ |a 10.1007/s42729-020-00407-7
|g Vol. 21, no. 1, p. 873 - 881
|0 PERI:(DE-600)2611093-3
|n 1
|p 873 - 881
|t Journal of soil science and plant nutrition
|v 21
|y 2021
|x 0717-635X
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/903044/files/Redel2021_Article_Long-TermCompostApplicationAnd.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/903044/files/RedelJPNSSRB.pdf
909 C O |o oai:juser.fz-juelich.de:903044
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)145865
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-02
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J SOIL SCI PLANT NUT : 2019
|d 2021-02-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2021-02-02
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-02
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-02-02
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-02
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21