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aForschungszentrum Jülich GmbH, Jülich Centre for Neutron Science JCNS-4 at Heinz Maier-Leibnitz Zentrum MLZ,

Lichtenbergstrasse 1, D-85747 Garching, Germany, and bTechnische Universität München TUM, Heinz Maier-Leibnitz

Zentrum MLZ, Lichtenbergstrasse 1, D-85747 Garching, Germany. *Correspondence e-mail: h.frielinghaus@fz-juelich.de

This article deals with multiple scattering effects that are important for the

method of small-angle neutron scattering (SANS). It considers three channels

for the coherent elastic, the incoherent elastic and the incoherent inelastic

scattering processes. The first channel contains the desired information on the

experiment. Its multiple scattering effects can be desmeared, as shown in the

later sections of the article. The other two channels display a nearly constant

background as a function of the scattering angle. The incoherent elastic

scattering is treated by the theory of Chandrasekhar, allowing for multiple

scattering even at large scattering angles. The transfer to a single representative

thermalized wavelength by the inelastic scattering – as a simplification – is

assumed to happen by a single scattering event. Once the transition to this

altered wavelength has happened, further incoherent multiple scattering is

considered. The first part of the paper deals with the multiple scattering effects

of light water. In the later part of the article, deconvolution algorithms for

multiple scattering and instrumental resolution of the elastic coherent signal as

implemented in the program MuScatt are described. All of these considerations

are interesting for both reactor-based instruments with velocity selectors and

time-of-flight SANS instruments and may improve the reliability of the data

treatment.

1. Introduction

The detrimental effects of resolution and multiple scattering

on the small-angle scattering method have been discussed for

about 60–70 years (Guinier et al., 1955; Schmatz et al., 1974;

Glatter & Kratky, 1982). Nowadays, small-angle X-ray scat-

tering (SAXS) instruments are highly optimized such that

corrections with respect to resolution and multiple scattering

are unnecessary (Pauw, 2013). The beam size is often smaller

than the pixel size of the approximately 100 mm large detector

pixels, and the short wavelengths and small scattering prob-

abilities do not lead to significant multiple scattering. Of the

commonly used scattering geometries, only the Bonse–Hart

technique is still affected by non-negligible slit smearing,

although the corrections for that are well described and the

data treatment is straightforward (Pauw et al., 2021; Adams et

al., 2019). Small-angle neutron scattering (SANS) instruments

generally have more modest resolution settings than SAXS

instruments for reasons of intensity (Schmatz et al., 1974).

For reactor-based instruments, the wavelength band often lies

in the 10% range and the geometrical resolution takes

similar values. The resolution problem remains at spallation

sources such as the European Spallation Source (ESS)

because many SANS instruments are built with short colli-

mation and sample-to-detector distances in order to cover a
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wider wavelength band (Andersen et al., 2020). For very small

angle neutron scattering (VSANS), the typically larger struc-

tures in the micrometre size range enhance multiple scattering

effects at smaller Q values (Pipich et al., 2020). For ultra-small-

angle neutron scattering (USANS), the Bonse–Hart technique

is applied with considerable slit smearing (Barker et al., 2005;

Adams et al., 2019). An introduction to SANS and SAXS can

be found in recent textbooks (Hamley, 2021; Roe, 2000).

Multiple scattering effects in small-angle scattering experi-

ments were described by the rather simple equations of

Schelten & Schmatz (1980). This theory assumes that the

scattering angles are all sufficiently small that the path length

is ‘nearly’ equal to the sample thickness. At some scattering

angles approaching 30� used in SANS, this approximation no

longer holds and may introduce errors (Brûlet et al., 2007).

A more elaborate theory was proposed by Chandrasekhar

(2013), which allowed for longer path lengths and larger

scattering angles. This theory models the sample as a slab,

extending infinitely in the lateral dimension, which in

experimental terms means that the sample holder must leave

enough space at the sample exit. A theoretical hybrid

description was introduced by Frielinghaus (2018), where

coherent and incoherent scattering were split into separate

contributions. The multiple small-angle scattering effects

could still [as in the original theory of Schelten & Schmatz

(1980)] be described by a simple equation (Frielinghaus, 2018)

if the macroscopic differential cross section and the observed

intensity were Fourier transformed in the two dimensions of

the detector plane. For isotropic data, the 2D Fourier trans-

form can be replaced by the Hankel transform. The advantage

of this treatment is the option for removing multiple scattering

effects by inverting the calculation. This approach was

implemented numerically by Monkenbusch (1991) using a 2D

fast Fourier transform (2D-FFT), which also allowed for non-

calibrated small-angle scattering data in contrast to the

original formulation (Schelten & Schmatz, 1980). An analy-

tical approach for calculating the coherent multiple scattering

effects was given by Jensen & Barker (2018). The second

contribution in this hybrid treatment is the isotropic inco-

herent scattering, which is effectively treated in the theory of

Chandrasekhar. Although Chandrasekhar’s theory could also

be extended to Q-dependent scattering laws, it always calcu-

lates the multiple scattering effects without the option of

removing them.

The first resolution corrections for SANS data were

performed by smearing a model function that was then fitted

to the non-desmeared experimental data (Pedersen et al.,

1990). In this way, the model function covered the whole Q

range that fed into the smearing algorithm. Furthermore, it

was shown that smearing sharp peaks or dips in the scattering

model is more robust than desmearing the experimental data.

The latter was also considered much more difficult owing to

the experimental noise of the data. A realization of this is the

Lake algorithm (which we access through the well known

software IRENA), which performs the smearing of an opti-

mized calculated scattering function to fit the desmeared

experimental data (Ilavsky & Jemian, 2009; Lake, 1967). This

particular method will also be briefly discussed below. An

independent desmearing routine was developed by Wignall et

al. (1988). A resolution function for time-of-flight (TOF)

SANS instruments has been developed independently of that

for the velocity-selector-based instruments (Mildner et al.,

1986; Nelson & Dewhurst, 2014; Heenan et al., 1997; Heenan

& Rennie, 1993). However, for TOF SANS instruments the

resolution is tunable. The dynamic Q range is usually very

high, often above Qmax/Qmin ’ 1000 (this is also true for TOF

USANS; Agamalian & Koizumi, 2011; Carpenter & Agama-

lian, 2010).

In contrast to classical SANS experiments, the correction of

USANS data has been developed to a high standard. The

influence of slit collimation (and wavelength) smearing can be

corrected using the algorithms of Lake and Ilavsky/Barker/

Kline (Lake, 1967; Adams et al., 2019; Kline, 2006). The quality

of the treatment seems sufficient for the experimental data

with its typical experimental noise. In USANS experiments,

the investigated structures are in the micrometre size regime

and thus scatter strongly. Limited acceptance of scattered

neutrons reduces the effect of incoherent scattering. However,

multiple scattering remains an issue.

For subtracting the incoherent background from experi-

mental SANS data, a deeper understanding of its origins is

desired. However, for reactor-based instruments with a

narrow distribution of the wavelength �, an easy subtraction of

a constant background can be performed (Wignall & Bates,

1987). This becomes more complicated for TOF-based

instruments. The background level becomes wavelength

dependent and cross-talk between different � slices usually

occurs (Do et al., 2014; Heenan et al., 1997). For soft-matter

research, the inelastic scattering from water and other solvents

is present for most SANS experiments (Ghosh & Rennie,

1999; Sokolova et al., 2019; Balacescu et al., 2021) and must be

subtracted properly. In addition, the usually weak Q depen-

dence of the background may influence the coherent signal

(Ghosh & Rennie, 1990), although this effect has never been

calculated quantitatively (Barker & Mildner, 2015). The

scattering from water is only well understood on much smaller

length scales (Amann-Winkel et al., 2016).

The general purpose of this work is to describe SANS from

soft-matter samples which exhibit little or no wide-angle

scattering. This is usually the case for samples containing

either very small or no crystallites (Holderer et al., 2020). In

this paper we summarize the equations of multiple scattering

on the basis of population equations. This now also includes

the channel of inelastic scattering. Quantitative comparisons

with water and plexiglass scattering are made. Furthermore,

we provide the corrections to the elastic scattering signal, for

which we developed the program MuScatt (Frielinghaus, 2021;

Wuttke, 2021). Here, we use a 2D-FFT for isotropic data to

take into account both multiple scattering and resolution

desmearing. The 2D-FFT is computationally highly robust

against numerical noise. Furthermore, many details of the

calculations have been developed to suppress numerical noise

from the 2D data spreading, from the actual correction in

‘real’ space and from the data collection for the 1D data
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retrieval. The result is a corrected data set with a high fidelity

of the experimental noise but with clear corrections to the two

different smearing effects. We present a few examples to

demonstrate data correction with the MuScatt desmearing

program. Finally, a few more thoughts on corrections for

SANS data collected at spallation sources are discussed.

2. The scattering theory

The definitions, terminology and nomenclature used in this

section refer to the original article by Frielinghaus (2018) and

have been extended to include inelastic scattering from the

solvent. The aim of the theory is twofold: to describe the

coherent multiple scattering correctly which then allows for its

removal, and to connect the incoherent background to

transmission measurements at a broader wavelength range.

The latter method becomes important for TOF SANS

instruments in order to improve the predictive power of the

background subtraction for higher wavelengths where the

counting statistics are weak and the intensities at the highest

scattering angles may not level off at a constant background

level. A list of symbols is given in Appendix A. The primary

intensity is denoted by I0 and decays exponentially according

to the transmission function. The elastic coherent small-angle

scattering signal is i1(z, Q) and may be influenced by multiple

scattering or resolution effects. The momentum transfer Q is

connected to the scattering angle # via Q ¼ ð4�=�Þ sinð#=2Þ,

where � is the wavelength of the neutrons. The vector Q

extends in the QxQy plane and is not to be confused with the z

direction along the axis of the collimated neutrons within the

sample. The coherent scattering depends on the sample

thickness at z = d (slab geometry) and the scattering vector Q.

The elastic incoherent scattering in the forward and backward

directions is denoted by j+(z, #) and j�(z, #). Additionally, we

treat the inelastic scattering which we model as intrinsically Q

independent – similar to the incoherent contribution – in the

forward and backward directions: k+(z, #) and k�(z, #). The

overall integro-differential equations then become

@I0ðzÞ

@z
¼ ��tI0ðzÞ; ð1Þ

@i1ðz;QÞ

@z
¼

d�c

d�
ðQÞI0ðzÞ þ

Z
d�c

d�
ðQ0 �QÞi1ðz;Q0Þ d�0

��ti1ðz;QÞ; ð2Þ

@jþðz; #Þ

@z
¼

�i

4�
I0ðzÞ þ I1ðzÞ þ

Z
jþ þ j�
cos#

d�

� �
��iia

jþðz; #Þ

cos#
;

ð3Þ

�
@j�ðz; #Þ

@z
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�i

4�
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jþ þ j�
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d�

� �
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; ð4Þ
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Z
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d�

� �
þ

�i2

4�

Z
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d���ia2

kþðz; #Þ

cos#
; ð5Þ

�
@k�ðz; #Þ

@z
¼

�ii

4�
I0ðzÞ þ I1ðzÞ þ

Z
jþ þ j�
cos#

d�

� �
þ

�i2

4�

Z
kþ þ k�

cos#
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k�ðz; #Þ

cos#
; ð6Þ

with

�t ¼ �c þ�i þ�ii þ�a; �iia ¼ �i þ�ii þ�a ð7Þ

and

�ia2 ¼ �i2 þ�a2; �i2 ¼ �i; �a2 ¼ �a�2=�: ð8Þ

We now have the scattering probabilities of the coherent, the

incoherent and the incoherent inelastic scattering and the

absorption given by �c, �i, �ii and �a, respectively (the

integral cross section �c results from the macroscopic differ-

ential cross section d�c/d� by integrating over all solid

angles). The idea behind the inelastic scattering contribution is

that the final wavelength is a thermalized wavelength that is

determined by the Maxwell distribution and takes the average

value of �2 = 1.8 Å at 298 K or 0.025 eV (averaged over the

energy). The final incoherent wavelength is independent of

the incoming wavelength � and is assumed to be achieved by a

single scattering event (Ritenour et al., 1990). This assumption

is never completely true (Ghosh & Rennie, 1990; Heenan et

al., 1997; Heenan & Rennie, 1993). We assume that the

neutron takes either the original wavelength � or the fixed

wavelength �2 and no other wavelengths are allowed. This is

an idealization of the otherwise broader distributions, espe-

cially of the inelastically scattered neutrons. The further

inelastic scattering and absorption probabilities �i2 and �a2

scale with the wavelength.

The idea behind equations (1)–(6) is that of population

equations. On the left-hand side the differentials indicate the

changes to single channels of intensity that are determined by

specific scattering probabilities on the right-hand side. A

scattering probability consists of a macroscopic differential or

total cross section and an intensity channel from where or to

where (+ and � sign) the neutrons transition. Also, the

intensity channel in this product can be a specific intensity to a

certain scattering angle (lower-case letters) or an integral

intensity (upper-case letters). The specific intensities to a

certain scattering angle always carry the reciprocal unit of the

solid angle to which the intensity is scattered. The overall unit

of this product (per solid angle or integral) is connected to the

unit of the left-hand expression. The products may also

contain integrals, which means that all specific scattering

angles (in the respective hemisphere) of the intensity channels

need to be considered.

The respective integrals of the multiple scattering problems

are all two dimensional. Later we will introduce the Fourier

transform of the coherent scattering i1 and the macroscopic

differential cross section d�c/d� in the xy plane. This will lead
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to a factorization of the convolution in equation (2). For the

incoherent scattering channels, however, the integrals cannot

be calculated explicitly and the respective equations remain

integro-differential equations.

There are some assumptions connected to this description.

The multiple coherent small-angle scattering takes place at

small angles where the variation of the respective sample

thickness does not matter. As we will see later, the real shape

changes of the scattering curves happen at relatively small

scattering angles, while an overall calibration factor may shift

the whole curve to higher intensities. Also, the wide-angle

scattering can safely be neglected for most soft-matter samples

containing either no or very small crystalline domains

(Holderer et al., 2020). The description assumes that there is

no impediment to the flight of incoherently scattered neutrons

exiting the sample at large angles. This also includes flight

paths of neutrons that are first scattered in a lateral direction,

travel a considerable distance within the sample and are then

scattered towards the detector. So, laterally a larger exit

window of 1–2 mm to either direction in the xy plane would be

beneficial. Of course this is not always the case, and these

kinds of extreme flight paths have been examined in detail

elsewhere (Carsughi et al., 2000). The third assumption is that

neutrons being scattered incoherently once do not contribute

further to the coherent channel. This means that the infor-

mation about the scattering angle is lost by the first incoherent

scattering event, and secondly that the widening by small-

angle scattering is not relevant to the incoherent channels. The

same assumption applies to the neutrons being scattered once

inelastically. They will then keep their thermalized wave-

length.

Frielinghaus (2018) provided a graphical representation of

the different transitions of the neutrons between the different

populations I0, i1, j+ and j�. The idea behind this idealization is

that the small-angle scattering takes place at small angles

where the path length is not changed, but comes into play via

the cos# terms in the incoherent scattering. We call the

integral coherent scattering population I1 ¼
R

i1 d�. The new

transition via the inelastic scattering is a new route to the

populations k+ and k�. Once again this is a one-way route:

after the neutron takes the wavelength �2, there is no way

back to the other populations. We now discuss the three

populations (I0 + I1), ( j+ + j�) and (k+ + k�) as depicted in

Fig. 1. There is always a loss due to absorption, but from the

first population (I0 + I1) there are two important possibilities

of either elastic incoherent or inelastic incoherent scattering.

From the two populations ( j+ + j�) and (k+ + k�) there are

multiple scattering routes that redistribute the intensities with

respect to the angle #. Lastly, there is another transition from

( j+ + j�) to (k+ + k�) via the inelastic scattering probability.

Note that the inelastic population has two sources: the

coherent and incoherent elastic populations. The additional

pathway contributes significantly to the growth of the inelastic

population and therefore both pathways must be taken into

account.

The different scattering contributions can be solved

sequentially. For the primary intensity we obtain

I0 ¼ ÎI expð��tzÞ with ÎI being the full primary intensity

entering the sample. The total coherent scattering is described

by I1 ¼ ÎI ½� expð��tzÞ þ expð��iiazÞ�. It has a maximum at

z ¼ lnð�t=�iiaÞ=�c and the ideal sample thickness d is chosen

accordingly in order to optimize the macroscopic differential

cross section in the scattering experiment.

The multiple coherent scattering solution is obtained by

using the Fourier transform. Any function in Q space will be

transformed to real r space via ~aaðrÞ ¼ ð1=2�Þ
R

aðQÞ �

expðiQ � rÞ d2Q. The back-transform is done by the expression

aðQÞ ¼ ð1=2�Þ
R

~aaðrÞ expð�iQ � rÞ d2r. The treatment of the

coherent multiple scattering problem only introduces the

integrals over the detector plane and does not involve the z

direction. The underlying mathematics only considers a

surface and not a volume. At this point, the formalism

represents a complete and correct description of anisotropic

scattering. For isotropic scattering, the Fourier transform can

be carried out in one dimension according to

~aaðrÞ ¼
R1

0 aðQÞQ J0ðQrÞ dQ and for the back-transform

according to aðQÞ ¼
R1

0 ~aaðrÞ r J0ðQrÞ dr, where J0 is the Bessel

function of zero order. These are the Hankel transforms of

zeroth order. At any point, one may return to anisotropic

scattering by including the full vectorial dependence on r. The

already well known (Schelten & Schmatz, 1980; Monken-

busch, 1991) analytical solution for the elastic coherent

intensity ~{{1ðd; rÞ (in ‘real’ space) then reads

~{{1ðd; rÞ ¼ ÎI
2�

�2
exp

�2

2�

gd�cd�c

d�
ðrÞ d

" #
� 1

( )
expð��tdÞ: ð9Þ

Note that for small scattering signals the single scattering

solution is obtained asymptotically [expð�Þ � 1 ’ �]. The

difficulty of this equation is the separation of the coherent and

overall incoherent scattering [in terms of �c and �i + �ii or i1
and ( j+ + k+), which will be observed as a sum on the detector].

Examples of dealing with multiple coherent scattering events

are discussed below in Section 6.
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Figure 1
Simplified graphical explanation of the population equations (1)–(6). The
three populations (I0 + I1), ( j+ + j�) and (k+ + k�) arising from the
intensity at small angles, the elastic incoherent intensity and the inelastic
incoherent intensity are considered. Arrows represent the possible
scattering routes. Accordingly, there are arrows from the small-angle
intensity towards the other two intensities with probabilities �i and �ii.
Multiple scattering contributions are represented by circular arrows.
Importantly, there are two routes to the inelastic intensity with the
probability �ii that amplify its population considerably. More details
about the separate populations are given by Frielinghaus (2018).



The elastic incoherent scattering intensities are described

quantitatively by the theory of Chandrasekhar (2013). In

summary, one obtains the following result:

jþðd; #Þ ¼
ÎI

4�
Fð�1 ¼ �iiad; � ¼ cos#; �0 ¼ 1Þ; ð10Þ

j�ðd; #Þ¼
ÎI

4�
Bð�1 ¼ �iiad; � ¼ cos#; �0 ¼ 1Þ: ð11Þ

The characteristic functions F and B for the scattering in

transmission and the back-scattering (also called T and S in

the literature) are defined by the following equations:

1

�0

þ
1

�

� �
Bð�1; �; �0Þ ¼ $0 Xð�ÞXð�0Þ � Yð�ÞYð�0Þ

� �
;

ð12Þ

1

�0

�
1

�

� �
Fð�1; �; �0Þ ¼ $0 Yð�ÞXð�0Þ � Xð�ÞYð�0Þ

� �
:

ð13Þ

The cosine of the incident angle �0 takes the value 1 for

orthogonal incidence. The albedo $0 takes the ratio �i/�iia.

The details of the X and Y functions are described in the book

of Chandrasekhar, and are widely discussed in the literature

(Caldwell, 1982; Viik, 1986, 2021). These two functions help to

reduce the original integro-differential equations (3) and (4)

to integral equations. Replacing the integrals by discrete sums,

the solution can then be obtained from a linear algebraic

equation. For small optical thicknesses �1, the classical single

scattering results are obtained, i.e. a rather flat signal that

directly scales with the scattering probability �i. However, the

effect of large path lengths towards large angles # ! �/2 is

always included in the description.

The solutions for the inelastic incoherent scattering are

more complicated owing to the inhomogeneity of the differ-

ential equations, namely I0 þ I1 þ
R
ð jþ þ j�Þ= cos# d�. The

first two terms together take the form of a simple exponential

function. The last term can be approximately described by two

exponential functions and a constant, i.e. C0 þ

C1 expð��1zÞ þ C2 exp½��2ðd� zÞ�, that we fit to the inten-

sity distribution of
R
ð jþ þ j�Þ= cos# d� within the slab. The

solution of the inelastic scattering is linear with respect to the

inhomogeneity, and therefore the four solutions emerging

from the four single terms of the inhomogeneity are fully

independent. Usually, the apparent probabilities determined

from the inhomogeneity ( j+ + j�), for instance �1, are larger

than the physically relevant values encountered in the scat-

tering problem, i.e. �ia2. Thus, the decay of the inhomogeneity

is faster than one would expect from the original physical

problem. This can be simulated by using a different incident

angle for a hypothetical incoming radiation, i.e. �0 = �ia2/�1.

Thus, the solution of the inelastic scattering is calculated in a

similar fashion to equations (10)–(13), in this case with four

different summation terms. If the single decays of the four

inhomogeneities are too slow, further approximations are

necessary. As for the simplest case, we then approximate this

slow decay by a superposition of a constant and a decay with

�ia2. However, this is only required for extremely high

(�19 Å, which should be avoided – see kink in Fig. 3) neutron

wavelengths in combination with strong incoherent scatterers

like H2O. As this combination of very high wavelengths and

aqueous solvent is rarely used, we did not implement the full

correction in this work. Note that the prefactors for the

different contributions now read ÎI�ii=�i2, C0�ii=�i2 etc. The

albedo here is $0 = �i2/�ia2.

3. Water and plexiglass scattering

One basis for describing water scattering is the publication by

Ghosh & Rennie (1999). Here, the SANS spectra of water

(and other samples) with a sample thickness of 1 mm were

measured for different incident wavelengths and the ratios of

the elastic versus the total (elastic and inelastic) scattering

were determined. The detector-efficiency-corrected elastic

fractions are displayed in Fig. 2. For the solutions of equations

(1)–(6), the incoherent scattering cross section and the

absorption cross section of water, �i and �a, were determined

using the NIST web portal (National Institute of Standards

and Technology, 2021). The final wavelength of the therma-

lized neutrons �2 was set to 1.8 Å (the average of the Maxwell

distribution at 298 K or 0.025 eV; Sokolova et al., 2019), and

then all cross sections at that wavelength result from the

wavelength scaling. The inelastic cross section was determined

by adjusting the simulations of the elastic fraction for the 8 Å

value to the experimental value. The nearest-neighbor data

points agree well with the simulation. The values for 2 and

13 Å, however, deviate from the simulation results. This could

be due to the overlap of the incoming wavelength distribution

and the Maxwell distribution, and in the case of the 13 Å

measurement the statistics of the measurement are consider-

ably worse owing to the low intensity. For the simulations, we

assumed a scaling of the inelastic cross section of �ii / �. Of

course, one could assume a scaling with a different exponent.

However, as long as the integral scattering probabilities of
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Figure 2
The elastic fraction of the small-angle neutron scattering of a 1 mm thick
water sample as a function of wavelength (Ghosh & Rennie, 1999). The
solid line represents the simulation carried out on the basis of
equations (1)–(6).



both wavelengths (i.e. the incoming wavelength and 1.8 Å)

cover the same physical features and are not limited by the

available exit angles, our choice of exponent is supported by

the k/k0 term as given by Farhi et al. (2015). This assumption is

also supported by the fact that the monochromatic collision

kernel for low incoming energies (Ritenour et al., 1990) is

effectively governed by a single scattering event.

After calibrating the inelastic scattering probability to the

elastic scattering fractions, we compare the calibrated

apparent macroscopic differential small-angle scattering cross

sections ½d�app=d� ¼ ð jþ þ kþÞ=ðÎITtdÞ� of water (Lindner,

2000) and plexiglass (a commercial polymer that in its pure

form would also be called poly methylmethacrylate) with

simulations [equations (1)–(6)] (Fig. 3). For the water

measurements on the two instruments D11 and D22, the

parameters for the relative detection efficiency of the 1.8 Å

neutrons were taken as 15 and 25% [BF3 and 3He detectors;

more details are given by Lindner (2000)] with respect to the

higher wavelengths. For the plexiglass measurements on

KWS2, the inelastic cross section �ii was determined from the

� dependence of the transmission measurements, while the

incoherent cross section �i was calculated using the NIST

scattering length density calculator (National Institute of

Standards and Technology, 2021). This method becomes

important for TOF SANS instruments. The relative detector

efficiency for the 1.8 Å neutrons was assumed to be 62% (Li

scintillation detector). The simulations for the different

instruments and the two samples compare well with the

experiments. We stress that only the inelastic scattering

probability and the relative detector efficiency were free

parameters of this description. In particular, the detector

efficiency explains the considerable differences of water

scattering between the two instruments D11 and D22. The

most crude assumption of these simulations is that the inelastic

scattering results in a single wavelength of 1.8 Å after the

scattering.

The transmission measurements of the same plexiglass

sample on KWS2 are displayed in Fig. 4. The optical thickness

is quite linear, indicating two strong contributions to �t: �i as

a constant and (�ii + �a) / �. The latter contribution is

usually dominated by the inelastic incoherent scattering for

soft-matter samples. From the linear fit, we took the inelastic

scattering probability �ii and replaced the fitted elastic

contribution �i by a calculated value from the NIST web page

(National Institute of Standards and Technology, 2021). These

two parameters were then used to simulate the apparent

macroscopic differential cross sections in Fig. 3. For samples

that undergo small-angle scattering, the coherent contribution

is also dependent on the square of the wavelength, �c / �
2.

For TOF SANS instruments, this behavior is very important

for the reduction of the raw data. One should therefore always

compare the calibrated integral coherent scattering and the

calibrated incoherent scattering background with the trans-

mission measurements as a function of wavelength on the

basis of the scattering probabilities, as �c and �ii scale

considerably with �.

The deviation of experimental transmissions from our linear

fit (Fig. 4) at wavelengths larger than 17 Å is a matter of the

physics of the long wavelengths versus shorter wavelengths.

The integral scattering probabilities at large wavelengths no

longer cover the same short-range structure and dynamics of

the hydrogen atoms. This is also reflected in the deviation of

the measured plexiglass apparent macroscopic cross section

(Fig. 3).

The angle-dependent water scattering is shown in Fig. 5 as a

function of the scattering vector magnitude Q. The dashed

black line indicates the water scattering for a reactor-based

SANS instrument (for instance KWS2) with a wavelength of

5 Å. The steep drop-off in intensity lies in the wide-angle

range – far beyond the classical SANS Q range. The important

result is that the background is Q dependent, even in the
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Figure 3
The calibrated apparent small-angle scattering macroscopic differential
cross sections of water (1 mm thickness) and plexiglass (1.5 mm),
measured and simulated. The black data points arise from water
measurements on the instruments D11 and D22 at the Institut Laue–
Langevin (ILL) (Lindner, 2000). The solid green data points arise from
plexiglass measurements on the instrument KWS2 at FRM2 (internal
communication). The open dots are interpolated for calibration use. The
error bars are either clearly indicated or similar to the symbol size. The
solid lines are simulated using equations (1)–(6).

Figure 4
The negative logarithm of the measured (internal communication)
transmission of plexiglass (1.5 mm) on KWS2 (solid points) as a function
of the incident wavelength. The open symbols indicate interpolated data.
The red line is a linear fit to wavelengths below 15 Å.



typical SANS range of approximately 0.001–1 Å�1. Thus, it

may affect the coherent scattering when determining the

radius of gyration from a polymer solution.

So far, we have simulated only a single incoming wave-

length and neglected the distribution arising from the velocity

selector. However, for time-of-flight SANS instruments the

use of many different wavelengths (1.5–12 Å) is necessary by

design. To address this issue, we superimposed a range of

wavelengths with a 0.25 Å step in a pulse that is used by the

instrument, and took the different speeds of the inelastic

scattered neutrons of 1.8 Å into account. We accounted for the

Maxwell distribution of intensities from a typical cold source

(with an additional factor ��1 as is usually observed for most

spallation sources because of window absorption effects). The

collected neutrons were then calibrated using the transmission

and sample thickness (what we call apparent calibration). The

different slices were weighted either equally (green curve) or

statistically by the intensity of the incoming neutrons (red

curve). The geometrical dimensions of the instrument

SANS2d (Heenan et al., 2011, 2006) were considered for this

simulation, with a wavelength band from 1.5 to 12 Å. The

fringes that occur at high Q are an artifact of the wavelength

binning and we do not consider them to invalidate the method.

The green curve, though, is far from flat and can be considered

a poor representation. However, the interesting effect lies in

the maximum at Q = 0.4 Å�1, which could develop into a

water peak as observed for an H2O/D2O mixture measured on

SANS2d (Heenan et al., 2011) (blue curve, personal commu-

nication) using different (incorrect) statistical weights. The

different wings of the maximum at Q = 0.4 Å�1 (green curve)

originate from two effects: From the left, the weakly contri-

buting � slices give way to strongly contributing slices, leading

to an increase in intensity towards higher Q. To the right, the

inelastic contributions decay towards lower wavelengths. To

rephrase this issue of the inelastic scattering intensity: the

Maxwell distribution of the cold source with respect to the

unaltered, original wavelength for the inelastic pathway is

often much lower than that for the elastic incoherent intensity.

Both terms are equally important only close to the maximum

of the Maxwell distribution of the cold source. Overlap

between different pulses must be avoided for two reasons: to

avoid the overlap of two time frames within the assumption of

elastic scattering only, and to avoid the overlap from inelastic

scattering of the lowest wavelengths that hits the detector

even earlier if the lowest wavelengths are larger than 1.8 Å.

The optimum operation of a time-of-flight SANS instru-

ment at the ESS should include a careful transmission

measurement that is efficiency corrected for the wavelength

and should take place within the primary beam using a

strongly collimated beam. As we know, this is naturally

performed at pulsed sources. From the wavelength depen-

dence of the transmission measurements – as measured – one

could separate the different contributions of the scattering

probabilities: elastic incoherent scattering (wavelength inde-

pendent), inelastic incoherent scattering (and absorption / �)

and possibly the coherent elastic SANS scattering (/ �2) by

fitting a polynomial of second order. The transmission

measurements must be performed very carefully in order to

separate the bare sample transmission from the sample holder

transmission. The cross sections obtained from the fitting must

be compared with the experimental Q-dependent incoherent

contributions and with the integral elastic SANS scattering. By

correctly balancing the transmission and the scattering

dependencies, one might obtain a higher reliability of the

calibration of all scattering contributions – most importantly

the coherent SANS signal. This requires a high reliability of all

detection efficiencies of all detectors and monitors. For all the

corrections, we have assumed typical soft-matter samples that

show little or no wide-angle scattering from crystallites. In

pioneering work, the separation of coherent and incoherent

scattering has been addressed already (Seeger & Hjelm, 1991;

Heenan et al., 1997). In the case of very large scattering angles

(which are now achievable at many modern SANS instru-

ments), additional corrections are required to account for the

increased neutron path length within the sample. Such

corrections are described elsewhere (Brûlet et al., 2007).

4. Deconvolution of experimental data

So far, we have considered only the theoretical calculation of

the scattering signals – mainly of water scattering. The whole

theory also allows us to deconvolute the multiple scattering

effects that occur in elastic SANS scattering. Furthermore, it is

useful to consider the instrumental resolution effects for

experimental data. The description of these effects requires

a two-dimensional Fourier transform of the experimental

data set. We use a 2D-FFT code from Ooura (2021). The

corrections of the scattering profiles are performed in real

space – also known as r space. [The real space that applied in a
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Figure 5
The water scattering simulated as a function of the scattering vector
magnitude Q. The dashed black curve displays the water scattering for a
reactor-based instrument at 5 Å wavelength. The red curve shows
simulated water scattering for the ISIS instrument SANS2d, with
statistical weight from the intensity of the spectrum of a cold source.
The green curve shows a simulation of the same instrument with equal
weights for each � slice. The fringes at high Q result from the distinct
binning of � slices at intervals of 0.25 Å. The blue curve displays
experimental data from a 50:50 mixture of H2O/D2O measured on
SANS2d.



three-dimensional FFT would yield p(r), the real-space

correlation function. However the multiple scattering treat-

ment demands a two-dimensional FFT.] The data are then

transformed back and can be treated further using model

fitting of the scattering curves. The exact definitions for the

Fourier transform are given in the text close to equation (9).

We recall that the functions in different spaces are denoted

~aaðrÞ $ aðQÞ. The discrete Fourier transform is highly stable

with respect to numerical noise when applied twice. Within

machine precision, all data can be recovered. Much care has

been taken over the distribution of the one-dimensional data

on the 2D lattice and their recovery by a careful interpolation

method before and after the 2D-FFT. In this way, an overall

high fidelity of the corrections was achieved.

The following real-space calculations are those originally

reported by Schelten & Schmatz (1980). From the simple

differential equations of the multiple scattering problem

(Frielinghaus, 2018) the true macroscopic differential cross

section d�/d� is connected to the measured intensity i1 via

fd�d�cal

d�
ðrÞ ¼ d�1 2�

�2
ln

�2

2�

~{{1ðd; rÞ

ÎITt d

d

~RRPðrÞ
þ 1

" #
: ð14Þ

The fraction ~{{1ðd; rÞ=ðÎITt dÞ refers to the calibrated apparent

scattering intensity. The primary intensity ÎI is usually

measured indirectly by a secondary calibration standard, and

the functional form of ÎITt d is replaced by the real calibration

method. If the absolute calibration of the experiment is

performed correctly, the calibrated data can be used directly

for the correct correction of multiple scattering effects. The

multiple scattering correction occurs in the expression

lnðxþ 1Þ, and the Taylor expansion powers correspond to the

number of scattering processes considered. The factors 2�/�2

and d arise from the integration and intensity calculations,

respectively, and serve to maintain the correct dimensionality.

The function ~RRPðrÞ introduces a possible correction for the

instrumental resolution. It will be discussed below in more

detail. Equation (14) is referred to as correction method 1. A

second method of correction was introduced by Monkenbusch

(1991):

fd�d�noncal

d�
ðrÞ ¼ ~{{1ðd; 0Þ

dTt=�

Tiia � Tt

� ln
~{{1ðd; rÞ

~{{1ðd; 0Þ

Tiia � Tt

dTt=�

1

~RRPðrÞ
þ 1

� �
: ð15Þ

This method does not use the absolute scale of the experi-

mental intensity but requires the transmissions

Tt ¼ expð��tdÞ and Tiia ¼ expð��iiadÞ to be known accu-

rately. Tt is the overall experimental transmission required for

calibration, and Tiia is calculated on the basis of incoherent

scattering and absorption. For neutrons, the partial cross

sections of incoherent scattering and absorption can be

calculated accurately (National Institute of Standards and

Technology, 2021) and the inelastic scattering probability must

be obtained from �-dependent transmission measurements.

The final result of this correction stays at the same undefined

level of calibration. The numerical value of � = 0.057 cm was

determined by comparison of experimental data with the three

different correction methods (i.e. for one specific microemul-

sion). This factor describes the scaling of the normalized

intensities ~{{1ðd; rÞ=~{{1ðd; 0Þ, i.e. the strength of multiple scat-

tering with respect to this magnitude. Therefore, if the

experimental intensity is calibrated well, the whole correction

works even on an absolute scale. Equation (15) is referred to

as correction method 3. A hybrid method, method 2, is

obtained when the original prefactor that ensures the cali-

bration 2�/(�2d) of the final result is kept:

fd�d�cal

d�
ðrÞ ¼ d�1 2�

�2
ln

~{{1ðd; rÞ

~{{1ðd; 0Þ

Tiia � Tt

dTt=�

1

~RRPðrÞ
þ 1

� �
: ð16Þ

All methods 1, 2 and 3 can be reverted to add multiple scat-

tering effects by replacing the functional form lnðxþ 1Þ by

expðxÞ � 1. Those corresponding methods we number 4, 5 and

6. Note that methods 1–3 remove multiple scattering effects

and methods 4–6 add multiple scattering effects to the data

set. All multiple scattering calculations are quite noise tolerant

and we do not need to suppress high-frequency noise addi-

tionally.

In the following, we focus on resolution effects to be

corrected, i.e. to be desmeared. The simplest resolution

function is a Gaussian, where ~RRPðrÞ ¼ expð� 1
2 �

2
Qr2Þ,

performed individually for each scattering vector magnitude

Q. One basic argument for this simplicity is the central limit

theorem. The more contributions we include in the effective
~RRP, the more the result becomes Gaussian. This idea was also

taken into consideration by Pedersen et al. (1990), who only

considered the distortion of the smearing in polar coordinates

(the two-dimensional �Q environments – represented by small

circles of radius �Q, centered along the perimeter of a circle of

constant Q – appear to include more contributions from

slightly smaller Q). A further potential shortcoming of the

Gaussian formula is that the presence of distribution tails at

large r values leads to large corrections. While the essential

correction is performed at small r, the experimental noise is

simply amplified at large r (non-Gaussian corrections, for

instance a simple slit correction, would even result in diver-

gences in the application). We therefore require a cut-off in r

space. This idea is represented best with the formula

~RRPðrÞ ¼ exp �
1

2

�2
Qr2

1þ �4
Qr4=w4

� �
: ð17Þ

The whole formula makes a smooth cut-off, and at large r the

function ~RRP approaches unity, which preserves the high-

frequency noise. The parameter w controls the cut-off in terms

of the argument �Q r, i.e. at which relative r parameter the cut-

off of the noise takes place. Applying this formula to experi-

mental SANS data, it was found that a value of w = 2.0 was

appropriate in most cases. The cut-off value can be tuned

according to the requirements of the data, but the value

should lie between 1.5 and 2.5. So, applying the resolution

deconvolution in real r space requires a cut-off term, and any
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given smearing function is reduced to a simple standard

deviation �Q.

5. The program MuScatt

The program MuScatt is published in a GitLab repository

(Frielinghaus, 2021; Wuttke, 2021). Since it is still under

construction, a few more routines will be added over time.

However, the core components of the program already deliver

very good performance.

The kernel routine of MuScatt is a two-dimensional fast

Fourier (cosine) transform adapted from the work of Ooura

(2021). One property of this routine is that, when applying the

transform twice, the original data set is recovered up to

machine precision. This property is important in the sense that

large and small intensities (for instance in a Porod power law)

are treated together, such that small intensities may suffer

from reduced precision when summed together with large

intensities.

Furthermore, we restricted ourselves to isotropic SAS data

that we need to spread over a two-dimensional lattice. For this

purpose, interpolations must be made. This usually leads to an

averaging of neighboring data points, which will occur a

second time in the collection of the data from the lattice. To

counteract this effect, we also check for a significant consistent

change of the curvature from the neighboring data points in

the original data set and apply this curvature to the inter-

polation. This method captures certain exaggerated features

that will be averaged later in the data collection from the

lattice. A linear interpolation is only applied if the curvature is

not statistically significant. This detail enhanced the quality

and crispness of the recovered data set.

The last important contribution to the high fidelity of the

program MuScatt is the preservation of the experimental noise

without spurious amplification. The multiple scattering

corrections deal with small corrections when the argument x of

the lnðxþ 1Þ term is small. In this case, the expression was

expanded as a Taylor series for small arguments x to display

the highest degree of precision. The resolution correction

comprises division by the resolution function ~RRPðrÞ. At the

high-r end, the cut-off parameter w truncates the function to

unity. This ensures that higher-frequency noise is ignored and

transferred unchanged to the corrected data set. Although

possible, truncation effects in limited Q space do not usually

appear, in particular because the intensities fade at high Q and

are also associated with large errors. Figs. 11 and 12 below

show how the truncation effects affect theoretical calculations.

A few more details of the program are discussed in the

‘readme’ documents on the GitLab repository.

The program MuScatt works with isotropic ASCII data in

three-column format in the following order: the scattering

vector magnitude Q (Å�1), the calibrated intensity (cm�1) and

the statistical error of the intensity (cm�1). In addition,

MuScatt requires a parameter file containing the name of the

ASCII scattering file, a switch for the extrapolation towards

low Q (to determine how the beam stop data will be extra-

polated), a switch for the incoherent scattering subtraction,

the experimental wavelength � (Å) and the sample thickness

(cm). These are the essential parameters needed for decon-

volution method 1 (introduced above). Further parameters

are the experimental transmission and the calculated �ia for

the incoherent scattering and absorption, both important for

methods 2 and 3. There are further switches and parameters

that are explained in the readme.pdf file.

6. Examples for desmearing multiple scattering effects

In this section, we present and discuss some example calcu-

lations to demonstrate the quality of the MuScatt routines.

One original experimental data set has already been presented

by Frielinghaus (2018). Strongly scattering microemulsions

display strong multiple scattering effects when using longer

neutron wavelengths or thicker samples. The data set is

displayed in Fig. 6 for � = 5 Å, d = 1 mm; �= 5 Å, d = 2 mm; �=

12 Å, d = 1 mm; and � = 12 Å, d = 2 mm (� being the neutron

wavelength and d the sample thickness). The transmissions of

the sample were T = 0.554, 0.307, 0.179 and 0.031, respectively,

for each experimental configuration. The last data set suffers

most from the presence of multiple scattering. The apparent

calibration elevates the data set to higher intensities. In

addition, a shoulder develops at Q = 0.06 Å�1. This is due to

the double scattering of neutrons from the correlation peak at

Q = 0.03 Å�1. Furthermore, the correlation peak smears out

towards small Q and the plateau towards small Q is elevated.

This feature arises as a result of the low specificity of the

multiple scattering in terms of Q.

We now discuss the multiple scattering correction of the

data set for � = 5 Å, d = 1 mm (Fig. 7), where we require only

small corrections. Many data points are corrected towards

slightly lower intensities, but the general shape of the curve is

maintained. Note also that towards high Q the noise of the

data set is preserved. Usually at these high Q values the

statistical noise of the data becomes dominant and the high-Q

cut-off no longer plays an important role. However, for
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Figure 6
Four scattering experiments with the same microemulsion (Frielinghaus,
2018) are depicted on a log–log scale: apparent macroscopic differential
cross section as a function of the scattering vector magnitude Q. The
conditions for the neutron wavelength � and the sample thickness d are
indicated in the legend.



theoretical calculations this may still be an issue, as seen below

in Figs. 11 and 12. We now take this corrected data set as a

reference for the larger corrections of the other data sets.

These curves are presented in Fig. 8. In general, all of the

important features are recovered (we had to assume a slightly

higher background for the � = 12 Å measurements owing to

increased air scattering that was not properly subtracted by

the empty-cell measurement, possibly due to a slightly erro-

neous transmission measurement). The most pronounced

noise appears for the two measurements with the wavelength

� = 12 Å at high Q. Here, a substantial correction at Q =

0.06 Å�1 has taken place that has completely removed the

pronounced shoulder. However, the correlation peak does not

seem to be fully corrected for the � = 12 Å, d = 2 mm

measurement. On an absolute scale, the missing intensity is

less than�10%. Note that in the last case the transmission was

only 3.1%.

We now focus on the desmearing methods (1–3). For the

first data set (� = 5 Å, d = 1 mm) the different results are

almost indistinguishable. We therefore focus on the data

requiring the largest corrections (Fig. 9). The differences

between the three methods become obvious in the forward

scattering and around the correlation peak. This demonstrates

that method 1 is the most appropriate to correct data sets for

multiple scattering, although it requires highly precise

apparent absolute calibration to obtain the optimum results.

Furthermore, we had to introduce a ‘fudge factor’ � =

0.057 cm for methods 2 and 3, which could not be reproduced

exactly for other samples. One example from the literature

(Pipich et al., 2020) displays the scattering from a reverse

osmosis membrane (Fig. 10). This measurement also included

very small Q values down to 10�4 Å�1 using the VSANS

instrument KWS3. The displayed correction is performed with

method 1. Again, the curve is shifted to lower intensities and

the statistical noise is treated well. The other methods did not

agree well enough with method 1 and are not displayed here.
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Figure 10
An example of small-angle scattering from the RO98 pHt membrane that
is used in the desalination of potable water (Pipich et al., 2020). The black
circles indicate the calibrated apparent measurement including multiple
scattering effects, and the red plus signs represent the data corrected by
method 1. The intensities are reduced, but the Guinier scattering at the
lowest Q values is preserved. The sample thickness was 300 mm and the
transmission was T = 0.113.

Figure 7
The macroscopic differential cross section as measured (empty squares)
and deconvoluted by method 1 [equation (14)] (red line) (� = 5 Å, d =
1 mm, T = 0.554).

Figure 8
The macroscopic differential cross sections as deconvoluted with method
1 [equation (14)] from the original data shown in Fig. 6. The noise at the
highest Q values is preserved.

Figure 9
The deconvolutions by methods 1, 2 and 3 (red, blue and green lines,
respectively) of the measurement (� = 12 Å, d = 2 mm, T = 0.031) and the
deconvolution with method 1 with weakest corrections (symbols, � = 5 Å,
d = 1 mm, T = 0.554). Methods 2 and 3 show the most substantial
deviations from the ‘expected’ result (method 2 at the peak and method 3
at the forward scattering).



7. Examples for desmearing instrumental resolution

Finally, we discuss several examples for desmearing experi-

mental resolution effects. For this, we smeared the theoretical

scattering of spherical particles with different polydispersities

in addition to the smearing applied by Pedersen et al. (1990).

Examples are given in Figs. 11 and 12. The original scattering

curves describe spherical particles with 100 Å radius and

polydispersities of 5 and 10%. The red curves describe the

simulation of experimental smearing using the Pedersen

resolution function. The desmearing is displayed by the blue

curves. Within the symbol size, the original scattering func-

tions are recovered. The slight deviations from the original

data points correspond to slightly higher polydispersities of 5.8

and 10.8%. Thus, the instrumental desmearing works very well

to a very good approximation. The effect of the Q cut-off on

the deviation, � (blue curve), is only noticeable at high Q

values.

Another example, for experimental data, is displayed in

Fig. 13. Here, we distinguish the different detector settings at

20, 6 and 1 m by different symbols. Each of the data sets was

desmeared individually using the MuScatt (Frielinghaus, 2021)

routine and the Lake (1967) algorithm in the IRENA software

(Ilavsky & Jemian, 2009). The latter was developed for the

rectangular slit smearing typically needed for USAXS and

USANS. The noise of the 6 m data is strongly enhanced by the

Lake algorithm towards higher Q. This is highly undesirable.

In contrast, the MuScatt routines recover a scattering curve

that can be well described by a polydisperse sphere (green

curve). The triangular fringes and shifted minima in the Lake

algorithm correction are a result of the erroneous assumption

of slit desmearing – for SANS data a Gaussian desmearing

would be more appropriate. Overall, MuScatt does not

strongly exaggerate the fringes and correctly places the posi-

tions of the minima. Thus, we confirm the findings of Figs. 11

and 12. The overall results are therefore satisfactory and this

approach may be applied more widely for reduced experi-

mental data.

8. Recommended SANS data treatment

The general suggestion for reactor-based SANS data is that

the instrumental desmearing be applied to different instru-

mental settings separately before the multiple scattering
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Figure 11
Simulated SANS curve for spherical particles of radius 100 Å with 5%
polydispersity (standard deviation of a Gaussian distribution) but without
instrumental smearing (symbols). The red curve displays the same
simulated data including experimental smearing. The deconvolution of
the instrumental smearing is depicted as the blue curve. The first
simulation without instrumental smearing is recovered to within the error
of the symbol size.

Figure 12
Simulated SANS curve for spherical particles of radius 100 Å with 10%
polydispersity (standard deviation of a Gaussian distribution) but without
instrumental smearing (symbols). The red curve displays the same
simulated data including experimental smearing. The deconvolution of
the instrumental smearing is depicted as the blue curve. The first
simulation without instrumental smearing is recovered to within the error
of the symbol size.

Figure 13
Experimental data from colloidal particles with a radius of 500 Å. The
different symbols originate from different sample-to-detector distances of
20, 6 and 1 m. Each of the data sets was desmeared using the MuScatt
routine and the Lake algorithm for slit desmearing (shifted down).



correction is performed. In this way, individual effects of

different collimation settings are properly taken into account

as needed for reactor-based instruments with a velocity

selector. This instrumental resolution treatment can be

performed with the routine deconv, which reads in four-

column scattering data where the fourth column gives the

standard deviation of the Q smearing, �Q (Å�1). The

desmearing of the main routine in MuScatt may also be used

for merged data sets of different detector distances. Here, one

assumes that the entrance aperture smearing of the longest

setting holds for all data and only the wavelength desmearing

is applied correctly.

For time-of-flight SANS instruments, the different � slices

may be desmeared simultaneously in terms of resolution and

multiple scattering with the MuScatt routine. Slices of 1 Å

width seem to be well suited – at least for the suggested

corrections. However, only after the different slices have been

desmeared can they be combined to obtain a full-Q-range

scattering function. A slim version of MuScatt uses method 1

for multiple scattering desmearing and reads four-column

scattering data. A combination of the �-dependent transmis-

sion and the � slices may make the background subtraction

more reliable.

In general, we propose the desmearing method 1 as the best

choice for removing multiple scattering effects because it is

most reliable and does not introduce a fudge factor. The

current MuScatt routine is implemented in the current version

of the SANS software QtiSAS (Pipich, 2021).

9. Summary

We have obtained population differential equations to

describe the multiple scattering effects occurring at SANS

instruments with different separable contributions: the

coherent small-angle scattering, the elastic incoherent scat-

tering and the inelastic incoherent scattering.

The inelastic scattering results from the thermalization of

the neutrons. However, this thermalization can effectively be

described by a single scattering event.

In this simplification, we assume additionally that it is a

single wavelength to which the inelastic scattering evolves.

The solutions of the differential equations agree well with the

experimental data.

In practice, we still need to confirm the assumptions made in

this article for routine measurement with solvents other than

water, i.e. that the thermalization takes place by a single

scattering event and results in a single wavelength. While it is

hard to prove that the underlying theoretical concept would

work in all practical examples, it could be tested by measuring

H2O/D2O mixtures on a time-of-flight SANS instrument.

We have developed the program MuScatt (Frielinghaus,

2021), which deconvolutes both multiple scattering effects and

instrumental resolution. The algorithms have been optimized

such that the instrumental noise is preserved well and not

amplified. This fidelity to the data allows us first to correct the

data at a good noise level and subsequently to describe the

data by other models that can then be used to obtain the

statistical errors of the model fitting at a representative level.

APPENDIX A
List of symbols

z: dimension along the axis of the collimated neutrons.

x, y: dimensions in the detector plane.

Q: modulus of the scattering vector.

Q = (Qx, Qy): vectorial Q in detector plane.

r = (x, y): vector in real space in detector plane.

a(Q): function in Q space.

~aaðrÞ: same function in r space. The formalism of multiple

scattering demands these two-dimensional Fourier transforms.

#: scattering angle.

	: polar angle.

�: wavelength of incoming neutrons.

�2: wavelength after inelastic scattering.

ÎI: incident intensity at the sample.

I0: primary intensity.

i1: coherently scattered intensity.

I1: integral coherently scattered intensity
R

i1 d�.

j+: incoherent elastic scattering in transmission.

j�: incoherent elastic back-scattering.

k+: incoherent inelastic scattering in transmission.

k�: incoherent inelastic back-scattering.R
d�: integral over the solid angle in transmission or back-

scattering hemisphere 	 ¼ 0; . . . ; 2�, # ¼ 0; . . . ; �=2.R
d�0: integral over the solid angle with respect to Q0, d2Q0 =

ð2�=�Þ2 sin#0 d	0 d#0 = ð2�=�Þ2 d�0.
�c: cross section of coherent scattering,

R
ðd�c=d�Þ d�.

d�c=d�: macroscopic differential cross section of coherent

scattering.

d�app=d�: apparent macroscopic differential cross section of

an experiment, i.e. ði1 þ jþ þ kþÞ=ðÎITtdÞ.

�i: cross section of elastic incoherent scattering.

�a: cross section of absorption.

�ii: cross section of inelastic incoherent scattering.

�i2: cross section of elastic incoherent scattering at �2.

�a2: cross section of absorption at �2.

�t: total cross section �c + �i + �ii + �a.

�iia = �i + �ii + �a.

�ia2 = �i2 + �a2.

Tt: total transmission, i.e. expð��tdÞ.

T: experimental transmission, for us T = Tt.

Tiia: partial transmission, i.e. expð��iiadÞ.

F: Chandrasekhar’s scattering function in transmission.

B: Chandrasekhar’s back-scattering function.

X, Y: Chandrasekhar’s X and Y functions.

�1: optical thickness �iiad.

�: cosine of exit angle, i.e. cos#.

�0: cosine of incident angle, i.e. cos#0.

$0: albedo, for elastic incoherent scattering �i/�iia.

C0, C1, C2: coefficients for inner elastic incoherent intensity.

�1, �2: effective cross sections for that description.

k, k0: wavevectors, i.e. 2�/�2, 2�/�.
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