
teaching and education

1832 https://doi.org/10.1107/S1600576721010293 J. Appl. Cryst. (2021). 54, 1832–1843

Received 14 July 2021

Accepted 4 October 2021

Edited by J. M. Garcı́a-Ruiz, Instituto Andaluz de

Ciencias de la Tierra, Granada, Spain

‡ Present address: Funds for Scientific Research

(FRS–FNRS, Belgium) and Department of

Chemical Engineering, University of Liège,
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Many experimental methods are available for the characterization of

nanostructures, but most of them are limited by stringent experimental

conditions. When it comes to analysing nanostructures in the bulk or in their

natural environment – even as ordinary as water at room temperature – small-

angle scattering (SAS) of X-rays or neutrons is often the only option. The rapid

worldwide development of synchrotron and neutron facilities over recent

decades has opened unprecedented possibilities for using SAS in situ and in a

time-resolved way. But, in spite of its huge potential in the field of nanomaterials

in general, SAS is covered far less than other characterization methods in non-

specialized curricula. Presented here is a rigorous discussion of small-angle

scattering, at a technical level comparable to the classical undergraduate

coverage of X-ray diffraction by crystals and which contains diffraction as a

particular case.

1. Introduction

A major difficulty when working with nanostructures –

synthesizing them, manipulating them, studying their proper-

ties etc. – is that we cannot see them with the naked eye. Or

when we can, e.g. using electron microscopy, the observation

conditions are very different from the sample’s natural

conditions. Frozen, desiccated or metallized nanostructures in

an electron beam may have little in common with their natural

state swollen in water, undergoing thermal motion and

surrounded by all types of ions. Moreover, the amount of

material characterized in any microscopy observation is so

small that one can always doubt whether it is representative of

the sample as a whole. In many situations, therefore, workers

in the field of nanomaterials have to rely on indirect char-

acterization methods, whereby a macroscopic amount of

sample is analysed in its normal environment but only

incomplete structural information is obtained. Small-angle

scattering (SAS) is such a method.

In its principle, SAS is very similar to better-known

diffraction experiments (Guinier & Fournet, 1955; Glatter &

Kratky, 1982). In its most popular form, an X-ray (small-angle

X-ray scattering, SAXS) or neutron (small-angle neutron

scattering, SANS) beam is shone on a sample and the intensity

of the scattered beam is measured downstream as a function of

the angle [Fig. 1(a)]. Accurate measurement of scattering at

angles lower than a few degrees poses specific experimental

difficulties (Schmatz et al., 1974). In the present discussion,

however, we focus on the principle of the method and on the

structural significance of the measured signal. From that

perspective, the main difference from diffraction experiments

is that the angles investigated with SAS are much shallower.

To some extent, SAS can be thought of as the analysis of the

fine structure of what might be considered as the transmitted
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beam in a typical diffraction experiment. In order to resolve

small scattering angles experimentally, the detector must

generally be positioned far away from the sample, so SAS

instruments are generally large [Figs. 1(b) and 1(c)].

The physical principles underlying the SAS signal are

sketched in Fig. 2. In the case of X-rays, any electron met by

the incoming beam is accelerated by its oscillating electric

field, and this results in the emission of secondary electro-

magnetic waves with identical frequency. In the case of SANS,

the incoming neutrons interact with nuclei present in the

sample via the strong nuclear force, and the scattering is a

quantum-mechanical effect concerning the wavefunctions of

both neutron and atomic nuclei. In the context of the Born

approximation (Squires, 2012; Loh, 2017), however, each

nucleus met by the neutron beam can also be thought of as the

source of a secondary wavefunction. Therefore, although the

physics of X-ray and neutron scattering are quite different,

their geometric aspects can be discussed in terms of the same

classical Huygens-like description of wave propagation in

Fig. 2. In both cases, the intensity measured on the detector

results from the interference of all secondary waves as a

function of the scattering angle �. Analysing SAS patterns

consists of inferring structural information from the thus-

measured intensities.

Although SAXS can be measured on commercial labora-

tory instruments, users of the technique also benefit from the

worldwide development of large-scale facilities such as

synchrotrons and free-electron lasers, many of which have

instruments dedicated to small-angle scattering. Fig. 3 testifies

to the booming of the field over the past few decades.

Historically, starting from the 1960s, first-generation

synchrotrons were particle accelerators built for physics

research. As a consequence of the acceleration of charged

particles, these instruments inevitably produced X-rays, but

this was largely considered a nuisance. Second-generation

synchrotrons were particle accelerators deliberately built as

intense X-ray sources for characterization studies. From

approximately 1990 to 2010, the worldwide development of

optimized third-generation synchrotrons took place at the
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Figure 1
(a) A sketch of the main elements in a typical small-angle scattering
instrument. (b) The KWS-1 small-angle neutron scattering instrument at
the Heinz Meier-Leibnitz Zentrum (Feoktystov et al., 2015). (c) The
synchrotron small-angle scattering setup on the Dutch–Belgian beamline
(BM26) of the European Synchrotron Radiation Facility (image courtesy
of Professor B. Goderis). In both cases, the path of the beam is from the
right to the left.

Figure 2
A Huygens-like description of a scattering experiment. When an
incoming beam of wavelength � is shone on a sample, each material
point hit by it becomes the source of an isotropic secondary wave of
identical wavelength. The intensity measured on a detector at any given
angle � results from the interference of all the secondary waves.

Figure 3
The number of synchrotrons and neutron facilities active world-
wide, compiled from Wikipedia (https://en.wikipedia.org/wiki/List_of_
synchrotron_radiation_facilities), Lightsources.org (https://lightsources.
org/) and Neutronsources.org (https://neutronsources.org/neutron-
centres/), and the number of papers published yearly on SANS (blue
dots) or SAXS (black dots), compiled from the Web of Knowledge
database (https://webofknowledge.com).



impressive pace of one new facility commissioned yearly,

and this is continuing with the current development of free-

electron lasers as a fourth-generation synchrotron source

(Margaritondo & Rebernik Ribic, 2011). Since the 1960s, the

brilliance of synchrotron sources has tripled every eighteen

months (Rubensson, 2016), so that current synchrotron beams

are billions of times more intense than X-rays emitted by, say,

rotating anodes. In addition to higher intensity, synchrotron

beams are also more coherent, better focused, with a broader

energy spectrum available etc., which enables a wealth of

scattering experiments that are impossible on laboratory

sources. The difference between synchrotron and laboratory

X-rays is often likened to the difference between a laser and a

light bulb.

Comparable progress has taken place in the field of neutron

facilities, which developed at a fast pace all through the second

half of the 20th century, based on both nuclear reactors and

spallation sources (Rush, 2015). A major event in the field is

the current development of the European Spallation Source,

anticipated to become the most brilliant neutron source

worldwide (Santoro et al., 2020; Andersen et al., 2020). The

increasing number of facilities and brilliance of the sources has

been accompanied by qualitative improvements in the

instrumentation, with better optics, detectors, instrument

control, data analysis tools etc. (Koch, 2010; Andersen et al.,

2020)

The fields of application of SAS are extremely numerous as

it can in principle be applied to study any nanoscale system.

The following are just a few examples, which are inevitably

biased towards the authors’ scientific interests. Among others,

SAS is routinely used to analyse nanostructures in solution,

which is invaluable for colloids and proteins (Tuukkanen et al.,

2017; Gräwert & Svergun, 2020). Nanostructures can also be

analysed in working conditions, while materials are being

mechanically deformed (Pawlak & Galeski, 2005) or

submitted to a variety of thermal, chemical or electromagnetic

stimuli (Bailey, 2003; Hamley et al., 2004; Fujii et al., 2012).

Nanostructures can also be studied under extreme experi-

mental conditions. Spectacular examples are the in situ

analysis of nanostructured soot formation in flames (di Stasio

et al., 2006) and fireball lightning (Mitchell et al., 2008). SAS

also enables biochemical structures and processes to be

studied in biological tissues in vivo at the nanometre scale,

such as the spinning of spider silk (Riekel & Vollrath, 2001) or

muscle contraction (Ait-Mou et al., 2016).

The availability of different types of beams for performing

SAS experiments adds to the versatility of the method. In

addition to X-rays and neutrons, scattering experiments can

also be done with electrons, visible light or muons (obtained as

by-products of neutrons in spallation sources) (Windsor, 1988;

Pynn, 1990). The various probes differ in the sample char-

acteristics they are sensitive to, yielding different types of

contrasts. In the case of neutrons, this capability is further

expanded through the possibility of isotope substitution.

Another important characteristic of a probe is its penetration

depth, which may enable or forbid certain types of experi-

ment. The different brilliance of the sources is also central for

choosing a probe for time-resolved studies etc. Often, different

types of scattering technique are combined, each of which

provides different and complementary information on the

investigated system. (Allen et al., 2007; Whitten & Trewhella,

2009; Genix & Oberdisse, 2015).

Despite its huge potential as a characterization technique

for nanostructures in general – across the fields of chemistry,

physics, biology and materials science – SAS remains rela-

tively unpopular in most scientific curricula compared with

other experimental methods. This is partly due to its reputa-

tion as a very indirect technique, the thorough understanding

of which requires a strong taste for mathematics. The aim of

the present paper is to show that most SAS data can be

analysed qualitatively, yet rigorously, with minimal mathe-

matical background. The reader is referred to excellent

monographs (Guinier & Fournet, 1955; Glatter & Kratky,

1982; Feigin & Svergun, 1987), textbooks (Sivia, 2011) and

other educational material (Schmatz et al., 1974; Zaccai &

Jacrot, 1983; Windsor, 1988; Pynn, 1990; Hammouda, 1995;

Roe, 2000; Jaksch, 2019; Hamley, 2021) for a more thorough,

but also more technical, coverage of the subject.

2. Structural significance of small-angle scattering

For reasons that will soon be clear, SAS intensities are plotted

not against the scattering angle � but against the magnitude of

the scattering wavevector q, defined as

q ¼
4�

�
sin

�

2

� �
; ð1Þ

where � is the wavelength of the X-rays or neutrons. The

physical meaning of q is that h- q is the momentum transfer to

the photon or neutron during the scattering event. In the

context of diffraction studies, the scattering angle is sometimes

defined as 2� instead of �. In that context, q is therefore

defined as being proportional to sin(�), but this is the same

physical quantity. Among other advantages, scattering

patterns plotted against q are independent of the particular

wavelength selected for the experiment, which would not be

the case if they were plotted against �.
Fig. 4 displays four data sets that are representative of

qualitatively different types of scattering pattern that one

often encounters when applying SAS. For now, we only

highlight their most distinctive features, which we will discuss

and explain in detail in the rest of the paper. Fig. 4(a) is a

SAXS pattern measured on ordered nanoporous silica,

consisting of a hexagonal array of cylindrical pores a few

nanometres across (Gommes et al., 2016). The scattering peaks

can be interpreted in terms of diffraction by the periodic pore

structure, but with a periodicity in the nanometre range

corresponding to the distance between the pores. Many

materials do not exhibit periodicity on the nanometre scale

and their SAS patterns do not exhibit any sharp peak. One

such pattern is plotted in Fig. 4(b), which was measured by

SANS on an aqueous colloidal suspension of latex nano-

particles (Hammouda, 1995). The pattern seems featureless on

linear scales, except for a slight hump around q = 0.01 Å�1. On
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logarithmic scales, however, the scattered intensity exhibits a

plateau at small q, followed by an oscillatory decrease. Fig. 4(c)

displays a SAXS pattern obtained by shining a synchrotron

beam through a laboratory model of fireball lightning

(Mitchell et al., 2008). The SAXS pattern is dominated by an

I ’ q�4 trend at large values of q, which appears as linear on

the double logarithmic scales of the inset. The last pattern

[Fig. 4(d)] was obtained by neutron scattering on a 50:50%

blend of deuterated and protonated polystyrene, which

provides strong scattering contrast to half of the polymer

chains (Hammouda, 1995). This pattern too exhibits an overall

power-law scattering that levels off towards smaller values of

q, but the scattering exponent is here close to 2.

In the context of scattering, it is difficult for anybody with a

scientific education not to think of Bragg’s law, and this can be

misleading in the context of SAS. Bragg’s law is concerned

with diffraction, which is a very specific scattering phenom-

enon that happens only with periodic structures. In that case,

the beam is scattered exclusively at well defined diffraction

angles �d, which are related to the periodicities d of the

structure via (Sivia, 2011; Loh, 2017)

2d sin
�d

2

� �
¼ n�; ð2Þ

where n is any positive integer. Before discussing SAS, it is

important to emphasize that Bragg’s law is not a general law of

scattering but a consequence of the general principles of Fig. 2,

when particularized to spatially periodic structures. In the

specific case of Fig. 4(a), one can use equation (2) to infer the

spacing between pores from the positions of the peaks, but we

shall see that the scattering pattern contains much more

structural information than that. Moreover, equation (2) is

irrelevant and useless in cases of non-periodic structures, such

as in Figs. 4(b)–4(d).

Analysing from Fig. 2 the general conditions for destructive

or constructive interference of all secondary waves when they

reach the detector, in relation to all possible sizes and shapes

of the electron- or nucleus-containing nanostructures, may

seem at first to be a difficult task. The following two obser-

vations make it simpler. First, under the conditions of SAS the

emission of secondary waves can be assumed to be isotropic

(Glatter & Kratky, 1982; Sivia, 2011). Second, provided the

sample is sufficiently thin the secondary waves reach the

detector without being scattered a second time (Frielinghaus,

2018), so it is only the unperturbed incoming beam that is

responsible for the secondary waves. As a consequence, for

any given scattering angle �, that is for a given pixel of the

detector, the phase � of a specific secondary wave reaching the

detector depends only on the position (x, y, z) of the scattering

centre. In other words, for any given angle � one can calculate

a phase map ��(x, y, z) which is a characteristic of the

instrument. That function is the phase of the secondary wave

that would reach the detector in the event that the sample had

a scattering centre at a point (x, y, z). The scattered intensity is

then obtained as a second step, by comparing the sample-

independent phase map ��(x, y, z) with the actual spatial

distribution of electrons or nuclei in the considered sample.

The phase map can be thought of as the spectacles through

which any sample is analysed in a SAS experiment. It is

therefore occasionally referred to as the probe wave (Windsor,

1988). The phase map is different for each scattering angle,

which is why a full scattering pattern measured over a wide

angular range provides rich structural information.

Calculating the phase map for a given angle ��(x, y, z) is a

purely geometric question. Starting from any given point

teaching and education

J. Appl. Cryst. (2021). 54, 1832–1843 Cedric J. Gommes et al. � SAS for beginners 1835

Figure 4
Representative SAS patterns. (a) SAXS of ordered mesoporous silica (Gommes et al., 2016), (b) SANS of a colloidal suspension of latex nanoparticles
(Hammouda, 1995), (c) SAXS of a laboratory model of fireball lightning (Mitchell et al., 2008), and (d) SANS of a blend of deuterated and protonated
polystyrene (Hammouda, 1995). The insets show the same data on double logarithmic scales and compare them with power laws of the type I’ q�4 and
I ’ q�2. Qualitative sketches of the structures are provided at the top.



(x, y, z) two half lines are drawn, one towards the source and

the other towards the detector. Their lengths are the distances

travelled by the primary and secondary waves, respectively.

Let us call the sum of the two lengths L(x, y, z). Because the

scattering is instantaneous and the phase of a wave increases

by a quantity 2� each time the wave travels a distance equal to

its wavelength �, the phase map is obtained by multiplying

L(x, y, z) by 2�/�. The calculation of L(x, y, z) is explained in

Appendix A on the basis of simple trigonometry. The result is

sketched in Fig. 5: the phase map ��(x, y, z) is found to take

constant values on geometric planes oriented at an angle �/2

with respect to the incident beam. As a consequence, the

phase depends only on the space coordinate perpendicular to

the planes, which we call y. With that convention, the result is

written as

��ðx; y; zÞ ¼ �0 þ qy: ð3Þ

Here �0 is an irrelevant constant that depends on the arbi-

trarily chosen origin of y, and q is the same as in equation (1).

Equation (3) shows that ��(x, y, z) increases by 2� over a

distance �� given by

�� ¼
2�

q
: ð4Þ

The notation �� highlights the fact that this length plays the

role of an apparent, and �-dependent, wavelength. For SAS

one can approximate sin(�/2) ’ �/2 in the definition of q, so

that �� is approximately inversely proportional to the scat-

tering angle, �� ’ �/�, with � expressed in radians. In other

words, the smaller the angle, the larger the size of the inves-

tigated objects. For X-rays and thermal neutrons with � in the

ångström range, a typical angle of 1� ’ 0.017 rad converts to

�� ’ 6 nm. This is the reason why small-angle scattering is a

suitable experimental technique to probe nanometre-scaled

structures.

The concept of a phase map shown in Fig. 5, together with

its quantitative relation to the observation angle � in equation

(4), is all that is needed for a qualitative understanding of SAS.

Before proceeding, however, another caveat is necessary.

Although Fig. 5 superficially resembles the classical textbook

discussions of Bragg’s law – where the crystal lattice planes are

indeed parallel to each other and oriented at an angle of �/2
with respect to the incoming beam – the planes we are dealing

with here are by no means material planes. They are the

geometric locus of points that would lead to secondary waves

reaching the detector in phase, in the event that the consid-

ered sample had scattering centres (electrons or nuclei) there.

3. Scattering by individual particles: the form factor

We consider a single nanoparticle irradiated by X-rays and a

detector at some angle �, but the discussion also holds for

neutrons, provided electrons are replaced by nuclei. The

particle is assumed to be homogeneous so that the number of

electrons per unit volume is the same everywhere in it. If the

particle is made of silica, for example, every cubic nanometre

of it contains about 700 electrons. Each of these electrons is

the source of a secondary wave, which is described as a

complex number aexp(i�) when it reaches the detector. The

amplitude a is the same for all electrons, but the phase �
depends on the electron position through ��(x, y, z). The

amplitude A of the resulting wave is the sum of the contri-

butions of all electrons in the particle, namely

A ¼ a1 exp ði�1Þ þ a2 exp ði�2Þ þ � � � : ð5Þ

This sum has a simple geometric interpretation in the complex

plane, whereby each term is associated with an arrow of length

a and angle �, which are then added head-to-tail. This type of

analysis goes back to the early introduction of complex

numbers into optics by Fresnel (Karam, 2018) and was

popularized notably by Feynman (1985) in his lectures on

quantum electrodynamics.

Equation (5) may apply to all electrons individually, in

which case all a values are equal, but it is more convenient to

calculate the sum by grouping the contributions of electrons

with identical phases, which are all located within slices

oriented at an angle �/2 with respect to the incoming beam

(see Fig. 5). With such a procedure, and assuming that equal

volumes of material contain equal numbers of electrons,

equation (5) still applies with a proportional to the volume of

the slice and � equal to the constant value of �� within the

slice. The resulting interference is illustrated in Fig. 6 for an

arbitrarily shaped particle cut into five slices.

For the analysis to be mathematically accurate, the slices

have to be made infinitely thin, which leads to the following

expression for the scattered intensity (Guinier & Fournet,

1955; Glatter & Kratky, 1982; Feigin & Svergun, 1987; Pynn,

1990; Sivia, 2011; Jaksch, 2019):

IðqÞ ¼
RR

Particle

R
exp ðiqyÞ � dx dy dz

����
����

2

: ð6Þ

In this equation, the imaginary exponential accounts for the

phase qy of the secondary waves originating in all electrons at

a point (x, y, z) in line with equation (3), � is the electron

density of the material that makes up the particle, so that

� dx dy dz is the number of electrons in an infinitesimal
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Figure 5
For a given scattering angle �, the phase map ��(x, y, z) is the phase of the
secondary wave that would reach the detector in the event that the
sample had a scattering centre (electron or nucleus) at a point (x, y, z).
The phase map takes constant values on planes at an angle �/2 compared
with the incoming beam, and the distance between planes with identical
phases (modulo 2�) is �� = �/[2 sin(�/2)].



volume, and the integral replaces the sum in equation (5) and

is responsible for the interference. Finally, we note that

detectors cannot measure the amplitude of a wave but only its

intensity, defined as the squared modulus I = |A|2. Equation (6)

is valid for neutron scattering as well, provided the electron

density � is replaced by the neutron scattering-length density,

which characterizes how strongly the nuclei that make up the

particle interact with neutrons (Pynn, 1990).

Equation (6) is usually stated by saying that the scattered

intensity is the squared modulus of the Fourier transform of a

material’s electron density. Although this may sound mathe-

matically advanced, many aspects of it can be understood

qualitatively yet rigorously from the simpler perspective of

equation (5), through the geometric interpretation of complex

numbers in Fig. 6. For small values of q, the periodicity of the

phase map �� = 2�/q is much larger than the size of the

particle, so that all scattering centres of the particle scatter in

phase. In Fig. 6, this would correspond to a situation where all

the arrows point in the same direction, which maximizes the

scattered intensity. By contrast, for large values of q the length

�� is smaller than the particle, so that different parts of the

particle scatter out of phase. In Fig. 6 this corresponds to

arrows pointing in different directions, which results in a lower

scattered intensity. This simple analysis explains the overall

shape of most scattering patterns in the insets of Fig. 4: they

are globally decreasing functions with a plateau at small q, and

the transition occurs where 2�/q is comparable to the size of

the scattering objects.

The intensity I(q) scattered by an individual nanoparticle

over a complete range of q is referred to as its form factor

(Pynn, 1990; Sivia, 2011) and constitutes its SAS fingerprint. It

is customary to factor out the effect of the electron density and

that of the particle volume V, so that the form factor P(q) is

defined as

IðqÞ ¼ �2V2PðqÞ ð7Þ

and satisfies P(q) = 1 for small q. From equation (6), the form

factors can be calculated for a variety of particle shapes –

spheres, ellipsoids, cylinders, platelets, spherical shells etc. –

and mathematical expressions can be found in the literature

(Pedersen, 1997). As it is often desirable to assign a single size

parameter to investigated structures, one is naturally led to

modelling particles as spheres. The form factor of a sphere of

radius R is given by

PðqÞ ¼ 3
sinðqRÞ � qR cosðqRÞ

ðqRÞ
3

� �2

; ð8Þ

which is plotted in Fig. 7 for the particular value R = 50 Å. The

form factor of a sphere exhibits a distinctive oscillatory

decrease with alternating maxima and minima of P(q), as

notably observed in the inset of Fig. 4(b). The first minimum in

the form factor corresponds to the value of q where the

numerator of equation (8) vanishes, and it is found to be

related to the radius of the nanoparticles via R ’ 4.5/q. In the

case of Fig. 4(b), the experimental value q = 0.009 Å�1
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Figure 6
Phase-map analysis of the amplitude A(q) of the wave scattered by a
nanoparticle. The inset displays the nanoparticle overlaid with �� (x, y, z)
for the particular value q = 0.042 Å�1, corresponding to �� ’ 150 Å. Each
slice of the particle (numbered 1 to 5) is assigned a complex number with
phase � and modulus |a| proportional to the slice volume. The amplitude
of the scattered wave (in red) is obtained by adding the contributions of
all slices, as in equation (5).

Figure 7
Small-angle scattering by a spherical nanoparticle of radius R = 50 Å. The phase maps ��(x, y, z) corresponding to q values of (a) 0.03 Å�1, (b) 0.09 Å�1

and (c) 0.12 Å�1 are represented in colour. For any value of q, the nanoparticle is mentally split into slices with uniform phases, and the resulting complex
amplitudes are added (as in Fig. 6). The resulting scattering pattern, given by equation (8), is shown on the right.



converts to a particle radius of R = 50 nm, which is indeed the

size of the latex nanoparticles in that sample.

The oscillatory shape of the form factor of a sphere can be

understood through the same geometric construction as in

Fig. 6. This is illustrated in Fig. 7 for a given sphere and three

different values of q. In the figure, the sphere is cut into slices

with uniform phases and the corresponding amplitudes are

added to form a meandering curve in the complex plane. The

case of Fig. 7(a) is relatively similar to Fig. 6. It is repre-

sentative of low-q scattering, where all points of the sphere

lead to secondary waves with similar phases. When q is

progressively increased, destructive interference builds up,

whereby different parts of the sphere lead to distinctly

different phases. This corresponds to a curve that curls in the

complex plane. For the specific value q ’ 4.5/R the curling is

such that the curve closes head-to-tail, which is the origin of

the first minimum [Fig. 7(b)]. Increasing q further, the end of

the curve moves away from its starting point, until a maximum

is reached corresponding to Fig. 7(c) etc. A movie is provided

as supporting information to illustrate this in an animated way.

If the nanoparticles in a sample do not all have the same

exact size or shape, the conditions for constructive and

destructive interference differ from one particle to the next.

Therefore, the presence of sharp oscillations in an experi-

mental SAS pattern testifies to a narrow size distribution. This

situation contrasts with Figs. 4(c) or 4(d), which exhibit a

scattered intensity that decreases continuously with q, as is

typical of polydisperse systems. When plotted on double

logarithmic scales (inset) the scattered intensities display two

regimes: a plateau at low q followed by a decreasing intensity,

with the transition happening for �� comparable to the

particle size. From equation (6) it can be shown that, for a

single particle, the progressive onset of destructive inter-

ference for small values of q obeys a universal law that is

independent of the particle shape, namely (Guinier &

Fournet, 1955; Glatter & Kratky, 1982; Feigin & Svergun,

1987; Sivia, 2011; Jaksch, 2019)

PðqÞ ’ exp �ðqRGÞ
2=3

� �
; ð9Þ

where RG is the radius of gyration of the particle. The latter is

defined such that R 2
G is the average squared distance between

any point of the particle and its centre of mass. Equation (9) is

known as Guinier’s law, and it provides a universal and model-

independent way of determining particle sizes from SAS data.

Plotting experimental scattering data as ln½IðqÞ� against q2

often yields a linear trend at low q, the slope of which is

�R 2
G=3. Assuming specific types of structures, the RG thus

obtained can then be converted to more intuitive measures of

the particle size. For example, the radius of a sphere is R =

(5/3)1/2RG ; the length of a rod is L = 2(31/2)RG ; in a linear

polymer chain with segments of length b, the number of

segments is N ¼ 6R2
G=b2 etc. (Glatter & Kratky, 1982; Sivia,

2011).

In addition to sizes, qualitative structural information is

obtained by analysing the building up of destructive inter-

ference when q is increased beyond the limit of validity of

equation (9), that is when the periodicity of the phase map ��

is made smaller than the particle size. This typically leads to

power laws of the type I ’ q��, which can easily be identified

as straight lines with slope �� on double logarithmic plots. In

the insets of Fig. 4 the scattering exponent is � = 4 for the first

three samples and � = 2 for the last one. The specific exponent

4 is referred to as Porod’s law and is universal to all structures

with clear-cut interfaces (Ciccariello et al., 1988). Porod scat-

tering was expected in the case of the nanoporous solid in

Fig. 4(a), as well as that of the colloidal particles in Fig. 4(b).

However, its experimental observation in the case of the

fireballs [Fig. 4(c)] is proof that they contain compact nano-

structures with well defined surfaces. By contrast, the expo-

nent 2 observed in Fig. 4(d) points to a qualitatively different

type of structure. Exponents close to 2 are often encountered

for polymers, the structure of which on the nanometre scale

consists of flexible strands folding and coiling randomly. When

comparing loose and disordered structures as in Fig. 4(d) with

dense and compact structures as in Fig. 4(b), it is intuitively

understandable why the former should lead to a slower

building up of destructive interference than the latter, when q

is increased.

Discussing rigorously the relation between scattering

exponents � and specific types of structure can only be done

through the application of equation (6) to structural models. A

broad array of such models are discussed in the SAS literature

(Pedersen, 1997), and new models are regularly being devel-

oped each time a new type of material is encountered, with

characteristics that are not captured by earlier models. Beyond

the type of compact objects that universally lead to Porod

scattering with exponent � = 4, other structures include infi-

nitely thin needles and platelets, fractal-like hierarchical

aggregates, random flexible polymers, persistent polymers,

branched polymers etc. All of these lead to specific scattering

exponents, as summarized in Table 1. Experienced users of

SAS have these models in mind when they analyse experi-

mental scattering patterns. When plotting the data on double

logarithmic scales, as in the insets of Fig. 4, one can determine

at a glance both the qualitative type of structure, via the

exponent �, and its approximate size, via the cutoff value of q

where destructive interference sets in. A scattering exponent
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Table 1
Examples of scattering exponents � connected to typical structures.

The values are not unique, but they provide hints at the underlying structure
when analysing small-angle scattering data.

Scattering
exponent � Underlying structure

1 Randomly oriented elongated objects (needles, rods etc.)
2 Randomly oriented flat objects (platelets, discs etc.)
2 Ideal polymer coil, i.e. modelled as a random walk
�1.7 Self-avoiding polymer coil
1 	 � 	 3 Volume fractals (aggregates, house of cards etc.) with fractal

dimension D = �
3 < � < 4 Surface fractals, with fractal dimension Ds = 6 � �
4 Porod’s law: any structure with sharp interfaces between

contrasted domains
4 < � Smooth/progressive transitions between contrasted domains



does not point to a unique type of structure, as � = 2 might

point either to a polymer coil or to randomly oriented plate-

lets. In the context of a specific type of material, however, this

is seldom ambiguous.

4. Scattering by collections of particles: the structure
factor

The discussion has focused so far on the scattering by a single

particle. This has overlooked the fact that any sample contains

a large number of particles, each of which contributes to the

scattered intensity, with possibly constructive or destructive

inter-particle interference. The contribution of a collection of

particles to the scattering is captured by the structure factor,

which can also be analysed through equation (5). For that

purpose, the sum of the secondary waves from all electrons or

nuclei in the system is decomposed into the contributions of

all individual particles. The contribution of each particle is a

complex number aexp(i�), with an amplitude given by the

form factor through |a| = �V [P(q)]1/2 and a phase � that

depends on the position of the particle. If all particles are

identical the amplitude can be factored out from the sum,

which leads to the following expression for the scattered

intensity:

IðqÞ ¼ �2V2PðqÞ exp ði�1Þ þ exp ði�2Þ þ � � �
�� ��2: ð10Þ

In this equation, the phase �i of the ith particle is the value of

the phase map ��(x, y, z) at the position of, say, its centre of

mass. When comparing with equation (7), the presence of

many particles and their spatial distribution are found to be

accounted for by an additional factor, which is generally

q dependent, through the angular dependence of the phase

map.

Consider first the case where particles are randomly posi-

tioned in space [Fig. 8(a)], which is a fair approximation for

dilute suspensions. In that case, the random position of each

particle converts to a random orientation of its vector

contribution to the wave amplitude, independent of the

considered q. In other words, the amplitude of the scattered

wave results from a random walk in the complex plane,

whereby N successive steps are made with the same length a

and random directions. As a consequence of the random

orientation of each step, the average length of the walk is not

proportional to the number of steps. Instead, the average

squared length is proportional to N [see e.g. ch. 41 of Feynman

et al. (2010)]. In the present situation, this means that the

averaged squared amplitude of the wave, i.e. the scattered

intensity, is equal to

hjAj2i ¼ Njaj2; ð11Þ

where |a|2 is the intensity scattered by a single particle, namely

�2 V 2P(q), and N is the number of particles. The scattered

intensity per unit volume of the sample irradiated by X-rays

can then be written as

IðqÞ ¼ c�2V2PðqÞ; ð12Þ

teaching and education

J. Appl. Cryst. (2021). 54, 1832–1843 Cedric J. Gommes et al. � SAS for beginners 1839

Figure 8
Interference patterns resulting from multiple-particle scattering, for the cases of (a) randomly positioned particles, (b) aggregated particles, (c) particles
repelling each other and (d) a hexagonal crystalline structure. In each case, a typical phase map is shown with the particles in grey. In the complex-plane
representation of wave amplitude, the contribution of each particle is shown as a black arrow and the resulting wave amplitude is in red. The grey annular
area is the 50% confidence interval for the wave amplitude in the case where each particle has a random phase (incoherent scattering), and the dashed
circle is the root-mean-square value.



where c is the particle concentration in the suspension. Such

proportionality of the intensity with the number of scatterers

(or with their concentration) is typical of incoherent scattering,

whereby all scatterers have uncorrelated phases. Note the

difference from the form factor in Fig. 7 and equation (7), for

which the intensity is proportional to (�V)2, that is to the

squared number of electrons in each particle. A central

characteristic of equation (12) is that the scattered intensity is

proportional to the form factor, which is typical of dilute

systems.

In most situations the particle positions are not independent

of one another, and the random-walk analysis of Fig. 8(a)

[leading to equation (12)] has to be adapted. Fig. 8(b) illus-

trates the case of particle aggregation, for aggregates with na =

3 particles. The particular value of q chosen for the figure is

such that �� = 2�/q is larger than the aggregates, so that the

phases � of all particles within a given aggregate are statisti-

cally similar. This results in a correlated random walk in

amplitude space, whereby each step in the walk is likely to

have an orientation similar to the others. This leads to more

elongated trajectories and to a larger intensity of the scattered

wave. This can easily be understood by considering the limit of

vanishingly small q, for which �� is much larger than the

aggregates. In that limit all particles within an aggregate

scatter coherently, so the length of a step is no longer a but

na a. On the other hand, aggregates themselves scatter inco-

herently, so it is still a random walk but with only N/na steps.

The modified version of equation (11) is then

hjAj2i ’ na Njaj2; ð13Þ

which shows that particle aggregation results in an na-fold

increase in the scattered intensity in the limit of vanishingly

small q. For finite q the multiplying factor depends on the

shape and size of the aggregates. The modified version of

equation (12) is then

IðqÞ ¼ c�2V2PðqÞ SðqÞ; ð14Þ

where S(q) is referred to as the structure factor. The specific

structure factor obtained by evaluating the sum in equation

(10) for the considered type of aggregates is plotted in

Fig. 9(a). It does indeed satisfy S = 3 for small q and converges

to S = 1 for large q, and the transition occurs when �� is

comparable to the size of the aggregates. When �� is much

smaller than the aggregates, the phases of the contributing

particles become uncorrelated and one recovers the situation

described in equation (11). In addition to particle aggregation,

SAS researchers have considered a wide variety of qualita-

tively different spatial statistics, and many analytical expres-

sions are available for the corresponding structure factors

(Pedersen, 1997).

Another common situation is the case where particles repel

each other, which is relevant to concentrated suspensions. In

the case of Fig. 8(c) this is modelled as a hard-sphere inter-

action, whereby the particles cannot approach each other

closer than twice their radii [see e.g. Kinning & Thomas

(1984)]. The repulsion in real space converts to particles being

unlikely to have similar phases. In that case, the random-walk

analysis of the scattered amplitude still holds but the direc-

tions of the steps are anti-correlated. This results in a scattered

wave amplitude lower than in the incoherent case, which is

referred to as a correlation-hole effect. The structure factor

corresponding to this situation is plotted in Fig. 9(b). In the

limit of low q, similar to the case of Fig. 8 the structure factor is

much smaller than one. In the limit of large q, corresponding

to small ��, minute differences in the particle positions lead to

huge differences in their phases. The random-walk analysis

becomes valid again in that limit, and S(q) converges to one.

The last case we consider is that of a periodic arrangement

of particles, as in Fig. 8(d). The figure corresponds to a very

specific value of q and a specific orientation, for which the

periodicity of the structure coincides with direction y of the

phase map. In this exceptional configuration, all particles in

the structure scatter coherently. This is manifest in Fig. 8(d),

where all the vectors are parallel and lead to very strong

scattering. This corresponds to a diffraction condition, which is

obtained when the periodicity of the phase map �� coincides

with the spacing d between planes in a crystalline arrange-

ment. Using then equation (1) to express this in terms of the

scattering angle, one recovers Bragg’s law in the familiar form

of equation (2). The integer n results from the observation

that n�� is also a periodicity of the phase map for any n.

Scattering by a crystalline structure is not limited to the

diffraction peaks. However, the intensity of the peaks scales

like the squared number of particles, as for any coherent

effect. On the other hand, the scattering between the peaks is

incoherent. It therefore scales linearly with the number of

particles and is hence much weaker than the peaks.

Actual crystals have finite sizes and contain structural defects,

both of which contribute to widening the scattering peaks

beyond Bragg’s condition. In the limit of large q, all the thus-
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Figure 9
Structure factors corresponding to the structures in Fig. 8 with a particle
radius of R = 50 Å. The structures are (a) aggregates of three touching
particles, (b) particles repelling each other through hard-sphere
interaction with a hard-sphere radius of 2R and (c) a 2D hexagonal
periodic arrangement of particles with a lattice parameter of 3R. The
dashed lines are at S = 1, corresponding to incoherent scattering, and the
red dots indicate the specific values of q shown in Fig. 8.



broadened peaks overlap and S(q) converges to one also in

this case.

Note, finally, that the present discussion of diffraction in a

more general context than Bragg’s law enables one to

understand not just the position of the peaks but also their

intensities. The particle positions in Fig. 8(d) were chosen to

be identical to the 2D hexagonal arrangement of the pores in

the experimental SAXS pattern in Fig. 4(a). Compared with

the structure factor in Fig. 9(c), the measured second and third

diffraction peaks seem to be almost extinct. This has nothing

to do with a lack of structural periodicity, but merely results

from the multiplication of the structure factor by the form

factor of the pores, in line with equation (14). In the case of

porous silica in Fig. 4(a), the form factor of the pores has a

minimum at a value of q that is coincidentally very close to the

peak position in the structure factor. When all is properly

accounted for, the relative intensities of the peaks in Fig. 4(a)

can be used to infer the pore size of the material (Gommes et

al., 2016).

5. Conclusion

Although the physics of X-ray or neutron interaction with

matter can be complicated to understand in detail, many

geometric aspects of it are well captured by the classical

Huygens–Fresnel construction of Fig. 2. This makes the

concepts of small-angle scattering easily understandable in a

qualitative yet rigorous way with very little mathematics. We

hope the present paper can contribute to making the tech-

nique more accessible and to promoting its use in the broad

community of non-specialized scientists interested in nano-

structured materials in general.

The principles of wave–matter interaction exposed here are

more general than small-angle scattering as they apply to

many other elastic scattering methods common in physical

chemistry laboratories. The case of X-ray diffraction has been

discussed explicitly, but other examples include molecular

weight determination by static light scattering, the character-

ization of colloids by dynamic light scattering etc. The concepts

of the paper will enable teachers to discuss these many tech-

niques in a unified way, which will help students understand

them in more depth and apply them more creatively.

APPENDIX A
The phase map ����h(x, y, z)

We address here a geometric question. Considering Fig. 2, for

a given position of the source and detector (strictly, of a given

pixel in an actual detector), what is the length of a wave’s

trajectory from the source to the detector, which passes

through a given point (x, y, z)? To indicate that the answer

depends on the detector position, we call this L�(x, y, z).

Because the phase of a wave increases by a quantity 2� each

time it travels a distance equal to the wavelength �, the phase

is obtained as 2�L�(x, y, z)/�. This can also be expressed as

measuring the distance between the source and detector via a

scatterer, in units of �/(2�).

To answer the question, we choose space coordinates with

axes (x, y) as shown in Fig. 10(a), i.e. making an angle �/2 with

the incoming beam, and z orthogonal to both x and y. The

source and detector are both assumed to be infinitely far away

so that all incoming waves travel parallel to each other, as do

all outgoing waves. This defines a wedge with opening angle �,
the left-hand side of which is at a distance LS from the source,

while the right-hand side is at a distance LD to the detector.

The grey dot in Fig. 10 is the position of a point (x, y, z) for

which we endeavour to calculate L�(x, y, z). With the self-

explanatory notations of Fig. 10(b), the total distance travelled

by a wave from the source to the detector, via the electron, is

L = LS + L1 + L2 + LD.

We use the notation L0 for the total opening of the wedge at

distance y from the origin, as shown in Fig. 10(b). Using

trigonometry, one finds L0/2 = y tan(�/2). From Fig. 10(b), it is

also apparent that L1 = (L0/2 + x)cos(�/2) and L2 =

(L0/2 � x)cos(�/2). Putting all this together leads to

L ¼ LS þ LD þ 2y sin
�

2

� �
: ð15Þ

The important thing about this equation is that the coordinate

x cancels out. This means that all points on the line making an

angle of �/2 with respect to the incoming beam would lead to

secondary waves reaching the detector with the same phase.

This result remains true in three dimensions, if the lines are

replaced by planes orthogonal to y.

In terms of the phase �� = 2�L� /�, this leads to the

following expression:

��ðx; y; zÞ ¼
2�

�
LS þ LD

	 

þ

4�

�
sin

�

2

� �
y; ð16Þ

which is the result that we were looking for, represented in

Fig. 5. Equation (3) results from observing that the first term in

equation (16) is the irrelevant constant �0, which depends only

on the arbitrary position of the axes. The factor in front of y in
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Figure 10
Calculation of the phase of a secondary wave when it reaches the detector
(same configuration as in Fig. 2) as a function of the position of the
scattering centre. The scattering centre is shown as a grey dot and its
position is specified through axes (x, y) oriented as in panel (a). Point C is
the intersection of the plane orthogonal to the y axis and passing though a
point (x, y). (b) A magnified view of panel (a), in which the distances L0,
L1 and L2 are defined.



the second term of equation (16) is the scattering wavevector

q, defined in equation (1).

APPENDIX B
Incoherent scattering as a random walk in amplitude
space

We elaborate here on the relation between incoherent scat-

tering and random walks in a complex amplitude plane. If the

position of the scatterers is random like in Fig. 8(a), the real

and imaginary parts of the amplitude Ar = Re{A} and Ai =

Im{A} are also random numbers. From equation (5), the real

part is

Ar ¼ a cosð�1Þ þ cosð�2Þ þ � � � þ cosð�NÞ
� �

; ð17Þ

where each phase � is uniformly and independently distrib-

uted over [0, 2�). Each term in the sum has an average equal

to 0 and a variance equal to a2/2. If N is sufficiently large for

the central-limit theorem to apply, the real part of the

amplitude is therefore Gaussian distributed with variance

Na2/2. The probability density is

f ðArÞ dAr ¼
1

�Na2ð Þ
1=2

exp �
A2

r

Na2

� �
dAr; ð18Þ

and the imaginary part Ai is identically distributed. As the

intensity is I ¼ A2
r þ A2

i , the corresponding distribution is

f ðIÞ dI ¼
1

Na2
exp

�I

Na2

� �
dI; ð19Þ

with dArdAi = �dI. From this distribution the average inten-

sity is hIi = Na2, as in equation (11), and the percentiles can

easily be calculated as reported in Fig. 8. Equation (19)

implicitly assumes that Ar and Ai are statistically independent,

which is justified in the limit of large N (Merzbacher et al.,

1977).

When expressed in terms of the amplitude |A| = I 1/2, the

distribution in equation (19) is known as Rayleigh’s prob-

ability density function, and it was first proposed in the context

of acoustics (Rayleigh, 1880; Merzbacher et al., 1977). Much

later, Lord Rayleigh suggested it as a solution to a statistical

problem posed by Pearson (1905) to model the travelling of

mosquitoes, thereby bringing it into the field of random walks.

As recalled by Nahin (2009), Pearson commented, ‘I ought to

have known it, but my reading of late years has drifted into

other channels, and one does not expect to find the first stage

in a biometric problem in a memoir on sound.’ It is a nice twist

that this equation appears again in a wave propagation setting,

not about acoustics but about X-ray and neutron scattering.
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