000903110 001__ 903110
000903110 005__ 20240712101056.0
000903110 0247_ $$2doi$$a10.5194/amt-14-7221-2021
000903110 0247_ $$2ISSN$$a1867-1381
000903110 0247_ $$2ISSN$$a1867-8548
000903110 0247_ $$2Handle$$a2128/29287
000903110 0247_ $$2altmetric$$aaltmetric:117060652
000903110 0247_ $$2WOS$$aWOS:000720375400001
000903110 037__ $$aFZJ-2021-04834
000903110 082__ $$a550
000903110 1001_ $$00000-0002-8860-441X$$aSchmitz, Seán$$b0$$eCorresponding author
000903110 245__ $$aUnravelling a black box: an open-source methodology for the field calibration of small air quality sensors
000903110 260__ $$aKatlenburg-Lindau$$bCopernicus$$c2021
000903110 3367_ $$2DRIVER$$aarticle
000903110 3367_ $$2DataCite$$aOutput Types/Journal article
000903110 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1638451031_17873
000903110 3367_ $$2BibTeX$$aARTICLE
000903110 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000903110 3367_ $$00$$2EndNote$$aJournal Article
000903110 520__ $$aThe last 2 decades have seen substantial technological advances in the development of low-cost air pollution instruments using small sensors. While their use continues to spread across the field of atmospheric chemistry, the air quality monitoring community, and for commercial and private use, challenges remain in ensuring data quality and comparability of calibration methods. This study introduces a seven-step methodology for the field calibration of low-cost sensor systems using reference instrumentation with user-friendly guidelines, open-access code, and a discussion of common barriers to such an approach. The methodology has been developed and is applicable for gas-phase pollutants, such as for the measurement of nitrogen dioxide (NO2) or ozone (O3). A full example of the application of this methodology to a case study in an urban environment using both multiple linear regression (MLR) and the random forest (RF) machine-learning technique is presented with relevant R code provided, including error estimation. In this case, we have applied it to the calibration of metal oxide gas-phase sensors (MOSs). Results reiterate previous findings that MLR and RF are similarly accurate, though with differing limitations. The methodology presented here goes a step further than most studies by including explicit transparent steps for addressing model selection, validation, and tuning, as well as addressing the common issues of autocorrelation and multicollinearity. We also highlight the need for standardized reporting of methods for data cleaning and flagging, model selection and tuning, and model metrics. In the absence of a standardized methodology for the calibration of low-cost sensor systems, we suggest a number of best practices for future studies using low-cost sensor systems to ensure greater comparability of research.
000903110 536__ $$0G:(DE-HGF)POF4-2111$$a2111 - Air Quality (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000903110 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000903110 7001_ $$0P:(DE-HGF)0$$aTowers, Sherry$$b1
000903110 7001_ $$00000-0002-1867-1879$$aVillena, Guillermo$$b2
000903110 7001_ $$00000-0003-3188-3371$$aCaseiro, Alexandre$$b3
000903110 7001_ $$0P:(DE-Juel1)2367$$aWegener, Robert$$b4
000903110 7001_ $$0P:(DE-Juel1)16218$$aKlemp, Dieter$$b5$$ufzj
000903110 7001_ $$0P:(DE-HGF)0$$aLanger, Ines$$b6
000903110 7001_ $$0P:(DE-HGF)0$$aMeier, Fred$$b7
000903110 7001_ $$00000-0003-1386-285X$$avon Schneidemesser, Erika$$b8
000903110 773__ $$0PERI:(DE-600)2505596-3$$a10.5194/amt-14-7221-2021$$gVol. 14, no. 11, p. 7221 - 7241$$n11$$p7221 - 7241$$tAtmospheric measurement techniques$$v14$$x1867-1381$$y2021
000903110 8564_ $$uhttps://juser.fz-juelich.de/record/903110/files/amt-14-7221-2021.pdf$$yOpenAccess
000903110 909CO $$ooai:juser.fz-juelich.de:903110$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000903110 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)2367$$aForschungszentrum Jülich$$b4$$kFZJ
000903110 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16218$$aForschungszentrum Jülich$$b5$$kFZJ
000903110 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2111$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000903110 9141_ $$y2021
000903110 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-31
000903110 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-31
000903110 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000903110 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-31
000903110 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS MEAS TECH : 2019$$d2021-01-31
000903110 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-31
000903110 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-31
000903110 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-31
000903110 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-01-31
000903110 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-31
000903110 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-31
000903110 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000903110 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-31
000903110 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-31
000903110 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-31
000903110 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-31
000903110 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-31
000903110 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000903110 9801_ $$aFullTexts
000903110 980__ $$ajournal
000903110 980__ $$aVDB
000903110 980__ $$aUNRESTRICTED
000903110 980__ $$aI:(DE-Juel1)IEK-8-20101013
000903110 981__ $$aI:(DE-Juel1)ICE-3-20101013