000903117 001__ 903117
000903117 005__ 20240712113036.0
000903117 0247_ $$2doi$$a10.1038/s42256-020-00275-x
000903117 0247_ $$2Handle$$a2128/29289
000903117 0247_ $$2altmetric$$aaltmetric:97473691
000903117 0247_ $$2pmid$$a34258513
000903117 0247_ $$2WOS$$aWOS:000607597200002
000903117 037__ $$aFZJ-2021-04841
000903117 041__ $$aEnglish
000903117 082__ $$a004
000903117 1001_ $$00000-0002-0224-5293$$aAhmed, Daniel$$b0$$eCorresponding author
000903117 245__ $$aBioinspired acousto-magnetic microswarm robots with upstream motility
000903117 260__ $$a[London]$$bSpringer Nature Publishing$$c2021
000903117 3367_ $$2DRIVER$$aarticle
000903117 3367_ $$2DataCite$$aOutput Types/Journal article
000903117 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1715062819_21007
000903117 3367_ $$2BibTeX$$aARTICLE
000903117 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000903117 3367_ $$00$$2EndNote$$aJournal Article
000903117 520__ $$aThe  ability  to  propel  against  flows,  that  is,  to  perform  positive  rheotaxis,  can  provide  exciting  opportunities  for  applications  in  targeted  therapeutics  and  non-invasive  surgery.  So  far  no  biocompatible  technologies  exist  for  navigating  microparticles  upstream  when  they  are  in  a  background  fluid  flow.  Inspired  by  many  naturally  occurring  microswimmers—such  as  bacteria,  spermatozoa  and  plankton—that  utilize  the  no-slip  boundary  conditions  of  the  wall  to  exhibit  upstream  propulsion,  here  we  report  on  the  design  and  characterization  of  self-assembled  microswarms  that  can  execute  upstream  motility  in  a  combina-tion  of  external  acoustic  and  magnetic  fields.  Both  acoustic  and  magnetic  fields  are  safe  to  humans,  non-invasive,  can  pen-etrate  deeply  into  the  human  body  and  are  well-developed  in  clinical  settings.  The  combination  of  both  fields  can  overcome  the limitations encountered by single actuation methods. The design criteria of the acoustically induced reaction force of the microswarms, which is needed to perform rolling-type motion, are discussed. We show quantitative agreement between experi-mental data and our model that captures the rolling behaviour. The upstream capability provides a design strategy for deliv-ering  small  drug  molecules  to  hard-to-reach  sites  and  represents  a  fundamental  step  towards  the  realization  of  micro-  and  nanosystem navigation against the blood flow.
000903117 536__ $$0G:(DE-HGF)POF4-1215$$a1215 - Simulations, Theory, Optics, and Analytics (STOA) (POF4-121)$$cPOF4-121$$fPOF IV$$x0
000903117 536__ $$0G:(GEPRIS)366087427$$aDFG project 366087427 - Magnetokapillare Mikroroboter zum Einfangen und zum Transport von Objekten an Flüssiggrenzflächen (366087427)$$c366087427$$x1
000903117 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000903117 7001_ $$0P:(DE-Juel1)169463$$aSukhov, Alexander$$b1
000903117 7001_ $$aHauri, David$$b2
000903117 7001_ $$aRodrigue, Dubon$$b3
000903117 7001_ $$aMaranta, Gian$$b4
000903117 7001_ $$0P:(DE-Juel1)167472$$aHarting, Jens$$b5
000903117 7001_ $$aNelson, Bradley J.$$b6
000903117 773__ $$0PERI:(DE-600)2933875-X$$a10.1038/s42256-020-00275-x$$gVol. 3, no. 2, p. 116 - 124$$n2$$p116 - 124$$tNature machine intelligence$$v3$$x2522-5839$$y2021
000903117 8564_ $$uhttps://juser.fz-juelich.de/record/903117/files/EMS114744.pdf$$yOpenAccess
000903117 909CO $$ooai:juser.fz-juelich.de:903117$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000903117 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169463$$aForschungszentrum Jülich$$b1$$kFZJ
000903117 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167472$$aForschungszentrum Jülich$$b5$$kFZJ
000903117 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1215$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
000903117 9141_ $$y2021
000903117 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000903117 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-04
000903117 915__ $$0StatID:(DE-HGF)3003$$2StatID$$aDEAL Nature$$d2023-08-29$$wger
000903117 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT MACH INTELL : 2022$$d2023-08-29
000903117 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-29
000903117 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-29
000903117 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-29
000903117 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-29
000903117 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-29
000903117 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-29
000903117 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-08-29
000903117 915__ $$0StatID:(DE-HGF)9920$$2StatID$$aIF >= 20$$bNAT MACH INTELL : 2022$$d2023-08-29
000903117 920__ $$lyes
000903117 9201_ $$0I:(DE-Juel1)IEK-11-20140314$$kIEK-11$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0
000903117 9801_ $$aFullTexts
000903117 980__ $$ajournal
000903117 980__ $$aVDB
000903117 980__ $$aI:(DE-Juel1)IEK-11-20140314
000903117 980__ $$aUNRESTRICTED
000903117 981__ $$aI:(DE-Juel1)IET-2-20140314