000903117 001__ 903117
000903117 005__ 20240712113036.0
000903117 0247_ $$2doi$$a10.1038/s42256-020-00275-x
000903117 0247_ $$2Handle$$a2128/29289
000903117 0247_ $$2altmetric$$aaltmetric:97473691
000903117 0247_ $$2pmid$$a34258513
000903117 0247_ $$2WOS$$aWOS:000607597200002
000903117 037__ $$aFZJ-2021-04841
000903117 041__ $$aEnglish
000903117 082__ $$a004
000903117 1001_ $$00000-0002-0224-5293$$aAhmed, Daniel$$b0$$eCorresponding author
000903117 245__ $$aBioinspired acousto-magnetic microswarm robots with upstream motility
000903117 260__ $$a[London]$$bSpringer Nature Publishing$$c2021
000903117 3367_ $$2DRIVER$$aarticle
000903117 3367_ $$2DataCite$$aOutput Types/Journal article
000903117 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1715062819_21007
000903117 3367_ $$2BibTeX$$aARTICLE
000903117 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000903117 3367_ $$00$$2EndNote$$aJournal Article
000903117 520__ $$aThe ability to propel against flows, that is, to perform positive rheotaxis, can provide exciting opportunities for applications in targeted therapeutics and non-invasive surgery. So far no biocompatible technologies exist for navigating microparticles upstream when they are in a background fluid flow. Inspired by many naturally occurring microswimmers—such as bacteria, spermatozoa and plankton—that utilize the no-slip boundary conditions of the wall to exhibit upstream propulsion, here we report on the design and characterization of self-assembled microswarms that can execute upstream motility in a combina-tion of external acoustic and magnetic fields. Both acoustic and magnetic fields are safe to humans, non-invasive, can pen-etrate deeply into the human body and are well-developed in clinical settings. The combination of both fields can overcome the limitations encountered by single actuation methods. The design criteria of the acoustically induced reaction force of the microswarms, which is needed to perform rolling-type motion, are discussed. We show quantitative agreement between experi-mental data and our model that captures the rolling behaviour. The upstream capability provides a design strategy for deliv-ering small drug molecules to hard-to-reach sites and represents a fundamental step towards the realization of micro- and nanosystem navigation against the blood flow.
000903117 536__ $$0G:(DE-HGF)POF4-1215$$a1215 - Simulations, Theory, Optics, and Analytics (STOA) (POF4-121)$$cPOF4-121$$fPOF IV$$x0
000903117 536__ $$0G:(GEPRIS)366087427$$aDFG project 366087427 - Magnetokapillare Mikroroboter zum Einfangen und zum Transport von Objekten an Flüssiggrenzflächen (366087427)$$c366087427$$x1
000903117 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000903117 7001_ $$0P:(DE-Juel1)169463$$aSukhov, Alexander$$b1
000903117 7001_ $$aHauri, David$$b2
000903117 7001_ $$aRodrigue, Dubon$$b3
000903117 7001_ $$aMaranta, Gian$$b4
000903117 7001_ $$0P:(DE-Juel1)167472$$aHarting, Jens$$b5
000903117 7001_ $$aNelson, Bradley J.$$b6
000903117 773__ $$0PERI:(DE-600)2933875-X$$a10.1038/s42256-020-00275-x$$gVol. 3, no. 2, p. 116 - 124$$n2$$p116 - 124$$tNature machine intelligence$$v3$$x2522-5839$$y2021
000903117 8564_ $$uhttps://juser.fz-juelich.de/record/903117/files/EMS114744.pdf$$yOpenAccess
000903117 909CO $$ooai:juser.fz-juelich.de:903117$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000903117 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169463$$aForschungszentrum Jülich$$b1$$kFZJ
000903117 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167472$$aForschungszentrum Jülich$$b5$$kFZJ
000903117 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1215$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
000903117 9141_ $$y2021
000903117 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000903117 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-04
000903117 915__ $$0StatID:(DE-HGF)3003$$2StatID$$aDEAL Nature$$d2023-08-29$$wger
000903117 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT MACH INTELL : 2022$$d2023-08-29
000903117 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-29
000903117 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-29
000903117 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-29
000903117 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-29
000903117 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-29
000903117 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-29
000903117 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-08-29
000903117 915__ $$0StatID:(DE-HGF)9920$$2StatID$$aIF >= 20$$bNAT MACH INTELL : 2022$$d2023-08-29
000903117 920__ $$lyes
000903117 9201_ $$0I:(DE-Juel1)IEK-11-20140314$$kIEK-11$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0
000903117 9801_ $$aFullTexts
000903117 980__ $$ajournal
000903117 980__ $$aVDB
000903117 980__ $$aI:(DE-Juel1)IEK-11-20140314
000903117 980__ $$aUNRESTRICTED
000903117 981__ $$aI:(DE-Juel1)IET-2-20140314