001     903117
005     20240712113036.0
024 7 _ |a 10.1038/s42256-020-00275-x
|2 doi
024 7 _ |a 2128/29289
|2 Handle
024 7 _ |a altmetric:97473691
|2 altmetric
024 7 _ |a 34258513
|2 pmid
024 7 _ |a WOS:000607597200002
|2 WOS
037 _ _ |a FZJ-2021-04841
041 _ _ |a English
082 _ _ |a 004
100 1 _ |a Ahmed, Daniel
|0 0000-0002-0224-5293
|b 0
|e Corresponding author
245 _ _ |a Bioinspired acousto-magnetic microswarm robots with upstream motility
260 _ _ |a [London]
|c 2021
|b Springer Nature Publishing
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1715062819_21007
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The ability to propel against flows, that is, to perform positive rheotaxis, can provide exciting opportunities for applications in targeted therapeutics and non-invasive surgery. So far no biocompatible technologies exist for navigating microparticles upstream when they are in a background fluid flow. Inspired by many naturally occurring microswimmers—such as bacteria, spermatozoa and plankton—that utilize the no-slip boundary conditions of the wall to exhibit upstream propulsion, here we report on the design and characterization of self-assembled microswarms that can execute upstream motility in a combina-tion of external acoustic and magnetic fields. Both acoustic and magnetic fields are safe to humans, non-invasive, can pen-etrate deeply into the human body and are well-developed in clinical settings. The combination of both fields can overcome the limitations encountered by single actuation methods. The design criteria of the acoustically induced reaction force of the microswarms, which is needed to perform rolling-type motion, are discussed. We show quantitative agreement between experi-mental data and our model that captures the rolling behaviour. The upstream capability provides a design strategy for deliv-ering small drug molecules to hard-to-reach sites and represents a fundamental step towards the realization of micro- and nanosystem navigation against the blood flow.
536 _ _ |a 1215 - Simulations, Theory, Optics, and Analytics (STOA) (POF4-121)
|0 G:(DE-HGF)POF4-1215
|c POF4-121
|f POF IV
|x 0
536 _ _ |a DFG project 366087427 - Magnetokapillare Mikroroboter zum Einfangen und zum Transport von Objekten an Flüssiggrenzflächen (366087427)
|0 G:(GEPRIS)366087427
|c 366087427
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Sukhov, Alexander
|0 P:(DE-Juel1)169463
|b 1
700 1 _ |a Hauri, David
|b 2
700 1 _ |a Rodrigue, Dubon
|b 3
700 1 _ |a Maranta, Gian
|b 4
700 1 _ |a Harting, Jens
|0 P:(DE-Juel1)167472
|b 5
700 1 _ |a Nelson, Bradley J.
|b 6
773 _ _ |a 10.1038/s42256-020-00275-x
|g Vol. 3, no. 2, p. 116 - 124
|0 PERI:(DE-600)2933875-X
|n 2
|p 116 - 124
|t Nature machine intelligence
|v 3
|y 2021
|x 2522-5839
856 4 _ |u https://juser.fz-juelich.de/record/903117/files/EMS114744.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:903117
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)169463
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)167472
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1215
|x 0
914 1 _ |y 2021
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-04
915 _ _ |a DEAL Nature
|0 StatID:(DE-HGF)3003
|2 StatID
|d 2023-08-29
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT MACH INTELL : 2022
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-08-29
915 _ _ |a IF >= 20
|0 StatID:(DE-HGF)9920
|2 StatID
|b NAT MACH INTELL : 2022
|d 2023-08-29
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-11-20140314
|k IEK-11
|l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-11-20140314
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IET-2-20140314


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21