Home > Publications database > Bioinspired acousto-magnetic microswarm robots with upstream motility > print |
001 | 903117 | ||
005 | 20240712113036.0 | ||
024 | 7 | _ | |a 10.1038/s42256-020-00275-x |2 doi |
024 | 7 | _ | |a 2128/29289 |2 Handle |
024 | 7 | _ | |a altmetric:97473691 |2 altmetric |
024 | 7 | _ | |a 34258513 |2 pmid |
024 | 7 | _ | |a WOS:000607597200002 |2 WOS |
037 | _ | _ | |a FZJ-2021-04841 |
041 | _ | _ | |a English |
082 | _ | _ | |a 004 |
100 | 1 | _ | |a Ahmed, Daniel |0 0000-0002-0224-5293 |b 0 |e Corresponding author |
245 | _ | _ | |a Bioinspired acousto-magnetic microswarm robots with upstream motility |
260 | _ | _ | |a [London] |c 2021 |b Springer Nature Publishing |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1715062819_21007 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The ability to propel against flows, that is, to perform positive rheotaxis, can provide exciting opportunities for applications in targeted therapeutics and non-invasive surgery. So far no biocompatible technologies exist for navigating microparticles upstream when they are in a background fluid flow. Inspired by many naturally occurring microswimmers—such as bacteria, spermatozoa and plankton—that utilize the no-slip boundary conditions of the wall to exhibit upstream propulsion, here we report on the design and characterization of self-assembled microswarms that can execute upstream motility in a combina-tion of external acoustic and magnetic fields. Both acoustic and magnetic fields are safe to humans, non-invasive, can pen-etrate deeply into the human body and are well-developed in clinical settings. The combination of both fields can overcome the limitations encountered by single actuation methods. The design criteria of the acoustically induced reaction force of the microswarms, which is needed to perform rolling-type motion, are discussed. We show quantitative agreement between experi-mental data and our model that captures the rolling behaviour. The upstream capability provides a design strategy for deliv-ering small drug molecules to hard-to-reach sites and represents a fundamental step towards the realization of micro- and nanosystem navigation against the blood flow. |
536 | _ | _ | |a 1215 - Simulations, Theory, Optics, and Analytics (STOA) (POF4-121) |0 G:(DE-HGF)POF4-1215 |c POF4-121 |f POF IV |x 0 |
536 | _ | _ | |a DFG project 366087427 - Magnetokapillare Mikroroboter zum Einfangen und zum Transport von Objekten an Flüssiggrenzflächen (366087427) |0 G:(GEPRIS)366087427 |c 366087427 |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Sukhov, Alexander |0 P:(DE-Juel1)169463 |b 1 |
700 | 1 | _ | |a Hauri, David |b 2 |
700 | 1 | _ | |a Rodrigue, Dubon |b 3 |
700 | 1 | _ | |a Maranta, Gian |b 4 |
700 | 1 | _ | |a Harting, Jens |0 P:(DE-Juel1)167472 |b 5 |
700 | 1 | _ | |a Nelson, Bradley J. |b 6 |
773 | _ | _ | |a 10.1038/s42256-020-00275-x |g Vol. 3, no. 2, p. 116 - 124 |0 PERI:(DE-600)2933875-X |n 2 |p 116 - 124 |t Nature machine intelligence |v 3 |y 2021 |x 2522-5839 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/903117/files/EMS114744.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:903117 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)169463 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)167472 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-121 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Photovoltaik und Windenergie |9 G:(DE-HGF)POF4-1215 |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-09-04 |
915 | _ | _ | |a DEAL Nature |0 StatID:(DE-HGF)3003 |2 StatID |d 2023-08-29 |w ger |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NAT MACH INTELL : 2022 |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-08-29 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2023-08-29 |
915 | _ | _ | |a IF >= 20 |0 StatID:(DE-HGF)9920 |2 StatID |b NAT MACH INTELL : 2022 |d 2023-08-29 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-11-20140314 |k IEK-11 |l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IEK-11-20140314 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IET-2-20140314 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|