
1 Highly oxygenated organic nitrates formed from

2 NO₃ radical initiated oxidation of β-pinene

- 3 Hongru Shen,¹ Defeng Zhao,^{1,2,3,4*} Iida Pullinen,^{2, a} Sungah Kang,² Luc Vereecken,²
- 4 Hendrik Fuchs,² Ismail-Hakki Acir,^{2,b} Ralf Tillmann,² Franz Rohrer,² Jürgen Wildt,² Astrid
- 5 Kiendler-Scharr, Andreas Wahner, Thomas F. Mentel^{2*}
- 6 Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences,
- 7 Fudan University, 200438, Shanghai, China;
- 8 ² Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum
- 9 Jülich, 52425, Jülich, Germany;
- ³ Big Data Institute for Carbon Emission and Environmental Pollution, Fudan University,
- 11 Shanghai 200438, China.
- 12 ⁴ Institute of Eco-Chongming (IEC), 20 Cuiniao Road., Chenjia Zhen, Chongming,
- 13 Shanghai 202162, China
- ^a Now at: Department of Applied Physics, University of Eastern Finland, Kuopio, 70210,
- 15 Finland.
- 16 b Now at: Institute of Nutrition and Food Sciences, University of Bonn, Bonn, 53115,
- 17 Germany.
- *Corresponding authors: dfzhao@fudan.edu.cn, t.mentel@fz-juelich.de

20 Table of Contents (TOC)

Abstract

- 24 The reactions of biogenic volatile organic compounds (BVOC) with the nitrate radical 25 (NO₃) are major night-time sources of organic nitrates and secondary organic aerosol (SOA) 26 in regions influenced by BVOC and anthropogenic emissions. In this study, the formation 27 of gas-phase highly oxygenated organic molecules-organic nitrates (HOM-ON) from NO₃-28 initiated oxidation of a representative monoterpene, β-pinene, was investigated in the 29 SAPHIR chamber (Simulation of Atmosphere PHotochemistry In a large Reaction 30 chamber). Six monomer (C = 7-10, N = 1-2, O = 6-16) and five accretion product (C = 17-10). 31 20, N = 2-4, O = 9-22) families were identified and further classified into first- or second-32 generation products based on their temporal behavior. The time lag observed in the peak 33 concentrations between peroxy radicals containing odd and even number of oxygen atoms, 34 as well as between radicals and their corresponding termination products, provided 35 constraints on the HOM-ON formation mechanism. The HOM-ON formation can be 36 explained by unimolecular or bimolecular reactions of peroxy radicals. A dominant portion 37 of carbonylnitrates in HOM-ON was detected, highlighting the significance of 38 unimolecular termination reactions by intramolecular H-shift for the formation of HOM-39 ON. A mean molar yield of HOM-ON was estimated to be 4.8% (-2.6%/+5.6%), suggesting significant HOM-ON contributions to the SOA formation. 40
- 41 **Keywords:** NO₃ radical, biogenic volatile organic compounds, organic nitrate, secondary organic aerosol, anthropogenic-biogenic interaction, night-time oxidation

- **Synopsis:** The reactions of nighttime anthropogenic oxidants with biogenic organics form
- 44 low-volatile vapors, potentially contributing a large fraction of particulate organic matter.

Introduction

46

47 Biogenic volatile organic compounds (BVOC), such as isoprene (C₅H₈) and monoterpenes (C₁₀H₁₆) emitted from terrestrial vegetation, constitute a large fraction of global gas-phase 48 49 organic compounds. In the ambient conditions, BVOC are primarily oxidized by OH in the daytime.^{2, 3} NO₃ radicals at night-time.^{4, 5} and O₃ during both day- and night-time.^{6, 7} 50 51 These reactions are believed to be the dominant contributor to the formation of secondary 52 organic aerosols (SOA), influencing regional and global climate, air quality, and human health.^{8, 9} Compared to SOA formation from OH- and O₃-initiated oxidation of BVOC, 53 54 night-time NO₃ oxidation of BVOC has been less investigated, but these reactions are 55 highly relevant in ambient conditions, particularly in regions influenced by anthropogenic NO_x (NO + NO₂) and natural BVOC emissions. ¹⁰⁻¹² Reactions of BVOC + NO₃ can form 56 57 organic nitrates (ON), which serve as a temporary or permanent sink for NO_x and affects regional O₃ budgets and nitrogen cycles. ^{13, 14} Due to their semi-/low-volatility, ON can also 58 59 partition into the condensed phase participating in SOA formation. The results from the Southern Oxidant and Aerosol Study (SOAS) have shown that a large fraction of night-60 61 time SOA formation can be explained by reactions of BVOC + NO₃, about half of which is from monoterpenes + NO₃. Therefore, this anthropogenic-biogenic interactions 62 between NO₃ and BVOC, especially monoterpenes, is critical to understand night-time 63 64 SOA formation.

Among the monoterpenes, \(\beta \)-pinene has high emission rates (being the second most abundant monoterpene, after α-pinene), 16 high reactivity with NO₃ (with a second-order rate constant of 2.5×10⁻¹² cm³ molecule⁻¹ s⁻¹ at 298 K), ¹⁷ and high SOA yields with NO₃ (with SOA mass yields of 27-104% $^{18-23}$ compared to 0-16% for α -pinene $^{22-25}$). The reaction of β-pinene with NO₃ contributes a significant fraction of the SOA produced by monoterpene + NO₃ and was therefore often selected as a representative monoterpene in recent laboratory studies. ^{15, 19-21, 26} Previous studies have investigated β-pinene + NO₃. mostly focusing on the determination of the SOA yield, chemical characterization of particle-phase products, and possible formation mechanism of products containing a low number of oxygen atoms. For example, Fry et al. 19 measured the SOA yield. Boyd et al. 20 additionally found that neither humidity nor peroxy radical fate affects SOA yields, determined ON fraction in the aerosols, and proposed a formation mechanism of the detected gas-phase ON (C₁₀H₁₅NO_{5,6} and C₁₀H₁₇NO_{4,5}), which are formed by the bimolecular reactions of RO₂•. Claflin and Ziemann²¹ observed monomers (C₁₀ ON), dimers (C₂₀ ON), and trimers (C₃₀ ON) in the particle-phase products from reactions of βpinene + NO₃ and highlighted oligomerization reactions in the particle-phase mechanism. Despite previous efforts by a number of laboratory studies, the understanding of the chemistry of β -pinene with NO₃, especially regarding gas-phase reaction products containing a high number of oxygen atoms, is still incomplete. In particular, highly oxygenated organic molecules-organic nitrates (HOM-ON), a new class of gas-phase

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

compounds containing at least 6 oxygen atoms, ²⁷ have been recently observed and found to play a potentially significant role in SOA formation in the NO₃ oxidation of BVOCs, including β-pinene. ^{28, 29} Nah et al. ³⁰ observed a series of HOM-ON of C₇₋₁₀ with 4-9 oxygen atoms in both particle- and gas-phase products of NO₃ oxidation of β-pinene. Takeuchi and Ng³¹ additionally observed a substantial contribution of accretion products such as C₂₀H₃₂N₂O₈₋₁₁ in the particle phase. These HOM-ON are known to be formed in a short time-scale via autoxidation, 30 which involves successive intramolecular H-shifts in peroxy radicals (RO2•) and subsequent O2-addition, 6, 32 resulting in an oxygenated RO2• radical reaction chain, shown in Scheme S1a. Recent studies have summarized general RO2. reactions, 27, 33 with the most critical ones shown in Scheme S1b-j. Via bimolecular reactions with RO2•, HO2•, or NO3, the RO2• autoxidation chain will either be terminated to form a set of closed-shell products (Scheme S1b-d, g-j), including hydroxyperoxide, alcohol, carbonyl, and accretion products, or be continued via the formation of alkoxy radicals (RO•, Scheme S1e-f). Unimolecular termination pathways generally lead to the formation of carbonyls (Scheme S1h-i) or epoxides (Scheme S1j).³² However, the specific HOM-ON formation mechanism remains elusive for the β-pinene + NO₃ system. In addition, the knowledge of the chemical composition of HOM-ON is incomplete and their contribution to SOA formation is unquantified. In this study, experiments of NO₃-initiated oxidation of β-pinene were performed in

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

a large Reaction chamber). A large number of HOM-ON were identified and quantified. An example formation pathway was proposed and further constrained based on the time series. An estimate of production yields of these HOM-ON formed from the β -pinene + NO₃ reaction was provided to evaluate their role in the SOA formation.

Experimental and Methods

Experimental Setup. The experiments were performed in the SAPHIR chamber at Forschungszentrum Jülich, Germany. It is a double-walled Teflon chamber with a volume of 270 m³. A detailed description of SAPHIR can be found elsewhere.^{34, 35} Before the experiment, the chamber was purged with synthetic air at ~330 m³ h⁻¹ for about 4 h to clean the chamber and eliminate any interference from previous experiments. During the whole experimental period, the chamber was kept under an over-pressure of 35 Pa, leading to a dilution rate of 1.5×10⁻⁵ s⁻¹. The shutter system was closed to prevent photochemical reactions, including NO₃ photodissociation. A fan was continuously operated to mix the trace gases with homogenization within 2 min.

Experiments were designed to probe the time series of gas-phase HOM-ON formed from β -pinene + NO₃, with the detailed experimental procedure shown in Figure S1. First, ozone was added into the chamber, followed by NO₂ to form in-situ NO₃ radicals along with the simultaneous formation of dinitrogen pentoxide (N₂O₅) as per the reactions below

123
$$NO_2 + O_3 \rightarrow NO_3 + O_2$$
 (R1)

124
$$NO_3 + NO_2 \leftrightarrow N_2O_5$$
 (R2)

Through the equilibrium with N₂O₅, sufficiently high concentrations of NO₃ radicals were ensured. A concentration ratio (~2:1) of NO₂ and O₃ was selected to ensure that more than 98% of β-pinene reacted with NO₃ radicals instead of O₃ during each experimental period, as shown in Figure S2. About 16 min after NO₂ addition, concentrations of NO₃ and N₂O₅ reached 90 ppt and 1.5 ppb, respectively, and β-pinene was added into the chamber, initiating the oxidation reaction. Another two \beta-pinene additions were deployed at respectively 50 min and 100 min after the first β-pinene addition. Later on, 12 ppb O₃ and 16 ppb NO₂ were introduced into the chamber, followed by one more addition of β-pinene. Four experimental periods were performed to probe the time series of products and distinguish first- and second-generation products. With no seed particles used in these experiments and low concentrations of β-pinene and NO₃, a negligible amount of particles were formed and observed, as shown in Figure S3. This is in contrast to previous studies, ¹⁹-^{22, 26, 36} which used seed aerosol and/or high concentrations of β-pinene and NO₃, leading to particle formation. Due to the low particle number and surface area concentrations in our work, particles are expected to have negligible effects on the gas-phase products' partitioning. Experiments were performed under dry conditions (relative humidity <3%) and at an average temperature of 300.0 ± 2.0 K. **Instrumentation.** The chamber was equipped with a comprehensive set of instruments as described by Zhao et al.³⁷ In this experiment, a home-built diode laser-based, cavity ringdown spectrometer was used to measure in-situ concentrations of NO₃ and N₂O₅.³⁸ A

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS, Ionicon Analytik, Austria) was used to measure the concentrations of VOC, including β -pinene and acetone. From the measured concentrations, the β -pinene consumption during the experiments can be derived and agrees with the expectations when considering the dilution (a loss rate coefficient of $1.5\times10^{-5}~\text{s}^{-1}$) and the reaction with NO₃ (a reaction rate constant of 2.5×10^{-12} cm³ molecule⁻¹ s⁻¹).³⁹

The chemical composition of produced HOM-ON was characterized online using a

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

¹⁵NO₃ chemical ionization mass spectrometer (CI-API-TOF-MS, Aerodyne Research Inc.), which detects products with six or more oxygen atoms efficiently. 40 Nitrogen-15 was used to distinguish the nitrogen-14 atoms in the chamber-produced ON, most of which are expected to complex with the ¹⁵NO₃- ion. ⁴¹ The mass spectral data within the m/z 4-1400 range were analyzed using a Tofware analysis toolkit (Tofwerk/Aerodyne) in Igor Pro (WaveMetrics, Inc.). High-resolution analysis was applied to identify ions with a resolving power $m/z/\Delta m/z$ of ~3500. Isotopes were constrained during the peak assignment process. The mass spectrum of the first experimental period was selected to assign peaks, as it showed a mass spectrum similar to other experimental periods and the end of the experiments and contained the same products as other periods (Figure S4). We observed a few peaks such as m/z 289 and 334 corresponding to C₅H₁₀N₂O₈·15NO₃- and C₅H₉N₃O₁₀·15NO₃-,10 which are products of isoprene + NO₃ reactions.42 Their time series are shown in Figure S5. These peaks were observed before the beginning of β-pinene +

period, and no obvious and regular response to each β-pinene addition was observed. This indicates that these compounds are residuals on the chamber wall from prior experiments of isoprene + NO₃ one day before and with also possible small contributions from the reaction of β-pinene + NO₃. 43 Moreover, these compounds do not contain double bonds according to their formula, ⁴⁴ we expect that they do not react with NO₃ or O₃ during the βpinene experiment, which is confirmed by the lack of response to O₃ and NO₂ addition before the experiment. Additionally, the HOM-ON formed in the reaction of β-pinene with NO₃ were absent before the first β-pinene addition. Therefore, we conclude that residual compounds do not have significant influence on the β-pinene + NO₃ reactions. We would like to note that our CIMS easily detects these HOM evaporated from the residue on the chamber wall despite their low concentrations because of its high sensitivity to HOM. The concentrations of O₃ and NO_x were measured using an O₃ analyzer (ANSYCO, model O341M) and a NO_x analyzer (ECO PHYSICS TR480), respectively. The SOA was monitored using an SMPS (TSI DMA3081/TSI CPC3785). Measurements of physical parameters, including the temperature, relative humidity, and flow rate, were also conducted in these experiments. Yield of products. The peak area of ions identified using the mass spectrometer was normalized to the total ion signal and then converted to concentrations using a calibration coefficient (C) of 2.5×10¹⁰ molecule cm⁻³ nc⁻¹ (normalized count), determined using H₂SO₄

NO₃ experiments, their concentrations increased slowly during the whole experimental

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

as described by Pullinen et al.⁴⁵ A mass-independent transmission efficiency equal to H₂SO₄ (with an uncertainty of -0%/+14%) was used when applying the calibration coefficient to HOM, as determined in our previous study.⁴⁵ The determination of this calibration value and its application to HOM are described in details in the Supporting Information (SI) (section S1). The concentrations of the identified ON with more than 6 O atoms were summed to the total concentrations of HOM-ON after a wall loss rate of 6×10⁻ ⁴ s⁻¹, and a dilution rate of 1.5×10⁻⁵ s⁻¹ were accounted for. ⁴⁶ Previous studies have shown that the wall loss rate of some compounds changes as the experiment continues, ⁴⁷ which could affect the determined HOM yield. As the HOM yield in this study was determined over a short period after each injection (~10 min), we do not expect a large change in the wall loss rate during this period. In addition, considering the low volatility of HOM leading to their irreversible loss to the wall, a narrow distribution of the wall loss rates is expected. Sensitivity analysis shows that the HOM yield in this study is not sensitive to the wall loss rate, with a respective change of 23% and -11% in HOM yield from an increase of +100% or -50% in the wall loss rate. One uniform wall loss rate is thus used to determine HOM in this study. Such simplification may introduce additional uncertainty in HOM yield calculation. The molar yield of these HOM-ON was calculated following eq 1, where concentrations of produced HOM-ON is divided by the concentrations of β-pinene that reacted with NO₃.

204
$$Y = \frac{[HOM ON]}{[\beta \text{ pinene}]_{reacted}}$$
 (1)

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

Herein, [HOM-ON] represents the product concentration formed 10 min after each β -pinene addition. In other words, the molar yield Y refers to the primary yield, which mostly involves first-generation products and contains negligible multigeneration products. The uncertainty on the molar yield was estimated to be -55%/+117% from the combined uncertainties of HOM-ON peak intensity (~10%), β -pinene concentration (~15%), calibration factor (-52%/+101%), and transmission efficiency (-0%/+14%) using error propagation. The HOM-ON molar yield was averaged over four experiment periods, and uncertainties were estimated based on this value. Molar yields were later converted into mass yields using the molecular mass of each compound following Ehn et al.⁶

Results and Discussion

Overview of HOM-ON. Two distinct regions at m/z 280-460 (red) and m/z 510-690 (blue) in the mass spectrum of the first β -pinene + NO₃ experimental period (between the first and second β -pinene addition) were observed and segregated into monomers (C = 7-10, N = 1-2) and accretion products (C = 17-20, N = 2-4) (Figure 1a). Based on the above peak assignment methods, 153 compounds were identified, including 99 monomers, 46 accretion products, and 8 other compounds. Their detailed formula can be found in Table S1. Most of the identified products contained at least one N atom and more than six O atoms. This oxygenated feature agrees with the definition of HOM,²⁷ and these compounds can thus be classified as HOM-ON.

The Kendrick mass defect (O-based) plot of these identified HOM-ON is shown in Figure 1b, indicating their relative abundance and O/C ratio. Overall, the majority of the identified HOM-ON are monomers, with a fraction of 65.7%, with the rest being composed of accretion products (31.2%) and other compounds (3.1%). An average O/C ratio of 1.23 and 0.81 is observed for monomers and accretion products, respectively. Previous β-pinene + NO₃ studies generally detected O/C < 1 for monomers^{20, 21, 30} and 0.45-0.55 for accretion products.^{21, 31} This O/C difference can be attributed to the use of NO₃⁻ as a reagent ion. Specifically, NO₃- CIMS preferentially detects compounds containing high numbers of O atoms and multiple hydrogen bond donors, 40, 48 compared with other reagent ions such as I^{-.49} The HOM-ON on each horizontal line in Figure 1b share the same number of C, N, and H-atoms, with an increasing number of O atoms from left to right, allowing further grouping into product families based on the chemical formula. We distinguished six groups of monomer families (C₁₀H₁₅₋₁₇NO₆₋₁₅, C₇H₉₋₁₁NO₈₋₁₂, C₉H₁₃₋₁₅NO₈₋₁₄, C₈H₁₁₋₁₃NO₈₋₁₂, C₁₀H₁₄₋₁₆N₂O₈₋₁₆, and C₉H₁₀₋₁₂N₂O₉₋₁₂) and five accretion product families (C₂₀H₃₂N₂O₉₋₁₉, $C_{17}H_{26}N_2O_{12-18}$, $C_{19}H_{30}N_2O_{11-19}$, $C_{20}H_{31}N_3O_{12-21}$, and $C_{20}H_{30}N_4O_{14-22}$). These product families can be further assigned as the first- or second-generation based on their time series.

224

225

226

227

228

229

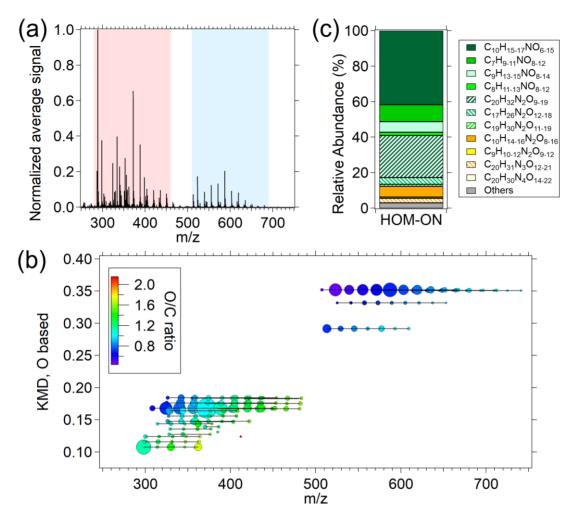
230

231

232

233

234


235

236

237

238

239

Figure 1. (a) Representative average mass spectrum of HOM-ON formed in this study, shown here for the first experimental period between the first and second β-pinene addition. (b) Kendrick mass defect (O-based) of identified products, with the area representing relative abundance and the color denoting the O/C value. (c) Stacked bar chart of identified product families, with first-generation products in green shades, second-generation products in yellow shades, and the remainder in gray.

Generally, first-generation products constituted a major fraction of total products (see figure 1c), with a value of 87.6%, including monomers of C₁₀H₁₅₋₁₇NO₆₋₁₅ (41.6%), C₇H₉₋₁₁NO₈₋₁₂ (9.6%), C₉H₁₃₋₁₅NO₈₋₁₄ (6.0%), and C₈H₁₁₋₁₃NO₈₋₁₂ (1.8%) and accretion products of C₂₀H₃₂N₂O₉₋₁₉ (23.7%), C₁₇H₂₆N₂O₁₂₋₁₈ (3.8%), and C₁₉H₃₀N₂O₁₁₋₁₉ (1.1%). Second-generation products, including monomers of C₁₀H₁₄₋₁₆N₂O₈₋₁₆ (6.0%) and C₉H₁₀₋₁₂N₂O₉₋₁₂

(0.74%) and accretion products of C₂₀H₃₁N₃O₁₂₋₂₁ (2.5%) and C₂₀H₃₀N₄O₁₄₋₂₂ (0.080%) were observed. Finally, the remaining 3.1% of the identified products could not be attributed to any of the above product families or could their structure be elucidated by a suitable mechanism pathway, but they are clearly products from β-pinene + NO₃ reactions based on their time series; here, they are simply grouped as "others". All of the aboveidentified compounds are organic nitrates, and their formation mechanism will be discussed below. We would like to note that low peaks constituting less than 0.1% of the largest product peak C₁₀H₁₅NO₁₀ were not assigned. First-Generation HOM-ON and Their Formation Mechanism. A number of monomer and accretion product families were observed with a typical first-generation time series. They were quickly formed after each β-pinene addition and reached a peak concentration about 7 min later. This rapid reaction rate indicates an autoxidation formation pathway, which has a short time-scale of tens of seconds per oxidation step or less.³² The detailed chemical composition and possible formation mechanism of these first-generation products, including C10 HOM-ON, C7-9 HOM-ON, and accretion products, are discussed in the following sections. First-generation C10 HOM-ON. Among the first-generation product families, C₁₀H₁₅₋₁₇NO₆₋₁₅ was the most abundant. Considering how the RO₂• radical chain is terminated to form closed-shell products (see the SI),³³ they are likely to be formed via

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

by the addition of NO₃ radical to the C=C double bond resulting in a nitrooxyalkyl radical C₁₀H₁₆NO₃• (NO₃-R•), as shown in Scheme S2. In the atmosphere, this NO₃-R• will be quickly converted to a nitrooxyperoxy radical C₁₀H₁₆NO₅• (NO₃-RO₂•) by reaction with O₂. Via autoxidation, C₁₀H₁₆NO₅• radicals rapidly undergo unimolecular H-shift and O₂ addition, resulting in a progressive series of C₁₀H₁₆NO_{2n+1}• radicals. Meanwhile, RO₂• such as the C₁₀H₁₆NO₅• radical can be involved in bimolecular reactions, including reaction with RO2•, NO3, HO2•, NO2, and NO.50 Their reaction loss rates (Figure S6) were quantified using a zero-dimensional (0D)-model based on the Master Chemical Mechanism (MCM) v3.3.1, 39, 51 with detailed calculations in Section S2. The loss rates of RO2• + RO2• and RO2• + NO3 reactions are much higher than the reaction RO2• with HO2•, NO2, and NO, especially within the short period after each β-pinene addition. Overall, bimolecular reactions within this study were then dominated by RO2• + RO2• and RO2• + NO3 reactions, where both reactions form nitrooxyalkoxy radicals (NO₃-RO•), while the RO₂• self- and cross-reactions also lead to radical chain termination (Russel mechanism, see Scheme S1b,c). For the formation of C₁₀H₁₆NO_{2n}•, an "alkoxy-peroxy" pathway provides a plausible mechanism. ^{33,45} For example, the nitrooxyalkoxy radical C₁₀H₁₆NO₄• can be competitively formed from the initially formed NO₃-RO₂• (C₁₀H₁₆NO₅•) and then undergo H-migration and O₂ addition forming C₁₀H₁₆NO₆•.^{52, 53} This peroxy radical can then again undergo

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

alkoxy-peroxy pathway, and yields the progressive series of C₁₀H₁₆NO_{2n}• products (with an even number of O atoms). In this study, both C₁₀H₁₆NO_{2n+1}• and C₁₀H₁₆NO_{2n•} radicals were observed, with time series of the most abundant radicals C₁₀H₁₆NO₉• and C₁₀H₁₆NO₈• shown in Figure 2a. Both C₁₀H₁₆NO₉• and C₁₀H₁₆NO₈• concentrations followed a typical time series as expected for a first-generation radical, quickly formed after each β -pinene addition, reaching a peak about 2-3 min later, and followed by a subsequently sharp decay. Interestingly, the peak concentration of the C₁₀H₁₆NO₉• showed about 30-60 s earlier than that of C₁₀H₁₆NO₈•. This time lag is also observed between other C₁₀H₁₆NO_{2n+1}• and C₁₀H₁₆NO_{2n}•, as shown in Figure S7. As the individual wall loss rate for each compound was not determined, we are unable to compare their formation rates precisely. However, considering that the major sink of RO2• is via chemical reactions leading to closed-shell products rather than wall loss, this time lag can be explained by the formation mechanism of C₁₀H₁₆NO_{2n}•, which is expected to involve a longer-lived RO₂• intermediate that must undergo a bimolecular step forming NO₃-RO• in either NO₃-RO₂• + RO₂• or NO₃-RO₂• + NO₃ reactions, as opposed to directly produced C₁₀H₁₆NO_{2n+1}•. To our knowledge, no previous studies have reported such temporal lag between the formation process of radicals containing odd and even oxygen atoms.

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

According to previous studies, the final fate of these radicals in general is radical chain termination by RO₂• which is expected to produce an equal amount of carbonylnitrates and hydroxynitrates via the Russell mechanism, termination by HO₂• resulting in

hydroperoxynitrates,³³ or termination by unimolecular decomposition forming small radical fragments such as OH or NO₂ (see the SI). The time series of a typical NO₃-RO₂• (C₁₀H₁₆NO₉•) along with the corresponding termination products (carbonylnitrates of C₁₀H₁₅NO₈, hydroxynitrates of C₁₀H₁₇NO₈, and hydroperoxynitrates of C₁₀H₁₇NO₉) are shown in Figure 2b. Note that hydroxynitrate formed from C₁₀H₁₆NO_x• and hydroperoxynitrate formed from C₁₀H₁₆NO_{x-1}• share the same product formula and cannot be distinguished based on the mass spectra. Thus, C₁₀H₁₇NO₈ and C₁₀H₁₇NO₉ here are mixtures containing both hydroxynitrates and hydroperoxynitrates, whereas these corresponding termination products demonstrated a typical time series of first-generation products, with a quick peak appearance after each β -pinene addition and subsequent decay. Notably, the carbonylnitrates C₁₀H₁₅NO₈ showed a much higher signal than the other two termination products. The dominance of carbonylnitrates was commonly observed within the C₁₀H₁₅₋₁₇NO₆₋₁₅ family and will be discussed in detail below. Additionally, the termination products, especially for carbonylnitrates of C₁₀H₁₅NO₈, peaked about 3-6 min later than C₁₀H₁₆NO₉•. This time window is suggested to be due to the termination process in the autoxidation chain. To our knowledge, this is the first time such temporal formation lag between radicals and the corresponding termination products is demonstrated.

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

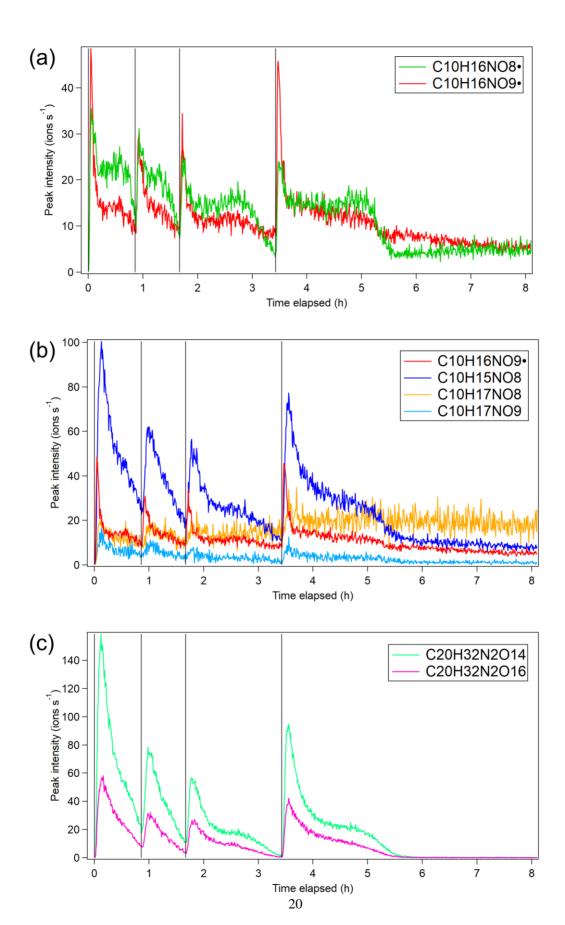


Figure 2. Time series of (a) C₁₀H₁₆NO₈• (green) and C₁₀H₁₆NO₉• (red) peroxy radicals, (b) 331 C₁₀H₁₆NO₉• peroxy radical (red) and its corresponding termination products, including 332 carbonylnitrates of C₁₀H₁₅NO₈ in dark blue, hydroxynitrates of C₁₀H₁₇NO₈ in yellow, and 333 hydroperoxynitrates of C₁₀H₁₇NO₉ in light blue, and (c) accretion products of C₂₀H₃₂N₂O₁₄ (lime) 334 and C₂₀H₃₂N₂O₁₆ (rose). The four vertical markers indicate β-pinene additions into the chamber. 335 All signals were averaged over binned 30 s intervals. 336 For C₁₀H₁₆NO₆₋₁₅• peroxy radicals (corresponding to the C₁₀H₁₅₋₁₇NO₆₋₁₅ family), 337 similar relative abundances were observed independent of odd or even numbers of O atoms 338 (Table 1). This illustrates the importance of the alkoxy-peroxy pathway in this product 339 family. For termination products, it should be noted that every C₁₀H₁₇NO_x signal, as 340 discussed above, comprises contributions of both hydroxynitrates and hydroperoxynitrates. 341 Nevertheless, it is obvious that carbonylnitrates showed much higher abundances than hydroxynitrates, apparently different from the 1:1 equivalence of carbonyl/hydroxy 342 343 products in the Russell mechanism, which was an important bimolecular termination 344 channel in this study. Several mechanisms have been described in the literature that can 345 explain this higher abundance of carbonyls. Given that these HOM-RO2• formed via 346 autoxidation contain multiple -OOH groups, the likely mechanism is the H-migration of an α-OOH hydrogen atom, forming an OH and a carbonyl (see Reaction S1h) and no 347 alcohol. 32, 33, 54-56 Such a H-shift termination pathway was likewise used to explain the 348 349 formation of the highest intensity peak of carbonylnitrate $C_{10}H_{15}NO_7$ from Δ -3-carene + NO₃.⁴¹ Alternative possible pathways leading to higher abundance of carbonyls include: 350 (1) the reaction of alkoxy RO• + O₂ forming carbonyls and HO₂•,⁵⁷ (2) decomposition of 351 β-nitrooxyperoxynitrate,⁵⁸ (3) self-reactions of RO₂• via the Bennett and Summers 352

mechanism, and (4) possible unequal yield of carbonyl and hydroxyl corresponding to a given RO₂• in the cross reactions, and some other pathways. However, kinetic studies have found relatively lower rate constants $(4.7 \times 10^4 \text{ s}^{-1})$ for the reaction of RO• with O₂ than that of other RO• reactions, including decomposition (1.5×10² s⁻¹ - 1.3×10⁸ s⁻¹) and isomerization (2.5×10⁵ s⁻¹ - 3.4×10⁷ s⁻¹).^{53, 59-61} The decomposition of β nitrooxyperoxynitrate formed in RO2• + NO2 reactions is fast in the particle phase but preferentially redissociates back to NO₃-RO₂• in the gas-phase.⁶² The Bennett and Summers mechanism of RO₂• + RO₂• → 2R_HC=O + H₂O₂ was mostly reported in heterogeneous oxidation reactions and was not previously included in the gas-phase reactions. 63, 64 For cross-reactions between a small and big RO2•, statistically an equal amount of hydroxyl and carbonyl products are expected for a large number of different RO2•, despite potential preferences in a single case, unless an RO2• is a tertiary or acyl RO₂•. An equal amount of hydroxyl and carbonyl is also recommended in current MCM⁶⁵, ⁶⁶ and the review of Jenkin et al.⁵⁰ Furthermore, overall bimolecular loss rates of RO₂• are less than 1.5×10⁻² s⁻¹, as shown in Figure S6. If we assume a unimolecular termination reaction rate of >0.1 s⁻¹ for the HOM-RO₂• as reported both experimental measurements³², ^{54, 67, 68} and theoretical studies^{56, 69, 70} for RO₂• with an α-OOH hydrogen, the unimolecular termination pathway outweighs bimolecular reactions. Although the exact chemical structures of the RO₂• in this study are different from those in the literature, ^{32, 54, 68} they likely contain α-OOH hydrogen atoms and can be assumed to have similar unimolecular

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

reaction rates. Therefore, instead of the above discussed alternative four pathways, unimolecular termination pathways are likely to be the major contributor to the high gasphase yields of carbonylnitrates observed.

Table 1. Family of $C_{10}H_{15-17}NO_{6-15}$ Observed, Including Nitrooxyperoxy Radicals, along with Their Termination Products, Carbonylnitrates, Hydroxynitrates, and Hydroperoxynitrates.^a

nitrooxyperoxy radical	carbonylnitrate	hydroxynitrate	hydroperoxynitrate
m	m-17	m-15	m+1
$C_{10}H_{16}NO_{7}$	$C_{10}H_{15}NO_6$		$C_{10}H_{17}NO_7$
1.9%	4.8%		1.1%
$C_{10}H_{16}NO_{8}$	$C_{10}H_{15}NO_7$	$C_{10}H_{17}NO_7$	$C_{10}H_{17}NO_8$
14.2%	34.6%	1.1%	7.8%
$C_{10}H_{16}NO_{9}$	$C_{10}H_{15}NO_8 \\$	$C_{10}H_{17}NO_8\\$	$C_{10}H_{17}NO_9$
10.0%	32.7%	7.8%	4.4%
$C_{10}H_{16}NO_{10}$	$C_{10}H_{15}NO_9$	$C_{10}H_{17}NO_9$	$C_{10}H_{17}NO_{10}$
2.5%	26.6%	4.4%	3.0%
$C_{10}H_{16}NO_{11}$	$C_{10}H_{15}NO_{10}$	$C_{10}H_{17}NO_{10}$	$C_{10}H_{17}NO_{11}$
4.2%	100%	3.0%	2.1%
$C_{10}H_{16}NO_{12}$	$C_{10}H_{15}NO_{11}$	$C_{10}H_{17}NO_{11}$	$C_{10}H_{17}NO_{12}$
8.7%	42.0%	2.1%	3.5%
C ₁₀ H ₁₆ NO ₁₃ •	C ₁₀ H ₁₅ NO ₁₂	C ₁₀ H ₁₇ NO ₁₂	C ₁₀ H ₁₇ NO ₁₃
5.2%	14.3%	3.5%	1.9%
$C_{10}H_{16}NO_{14}$	C ₁₀ H ₁₅ NO ₁₃	$C_{10}H_{17}NO_{13}$	$C_{10}H_{17}NO_{14}$
1.1%	11.7%	1.9%	0.6%
C ₁₀ H ₁₆ NO ₁₅ •	C ₁₀ H ₁₅ NO ₁₄	C ₁₀ H ₁₇ NO ₁₄	C ₁₀ H ₁₇ NO ₁₅
0.80%	13.2%	0.6%	0.19%
	C ₁₀ H ₁₅ NO ₁₅	C ₁₀ H ₁₇ NO ₁₅	
	2.8%	0.19%	

^a The relative intensities for the species detected in this study during the first reaction period are shown on the second line in the same cell. Their relative intensities were normalized to the largest product signal of $C_{10}H_{15}NO_{10}$.

Scheme 1 shows a plausible subset of the degradation scheme, based on structureactivity relationships (SARs) and recent experimental data, 20,71 and starting at the tertiary NO₃-R• C₁₀H₁₆NO₃• (R1) preferentially formed upon initial NO₃ addition to β-pinene. Similar to the OH-initiated oxidation, 72, 73 breaking of the four-membered ring has been reported as a favorable pathway, forming R2, 20, 21 which after O2 addition forms an unsaturated tertiary C₁₀H₁₆NO₅• (R3) radical. A structure similar to R3 was reported in the β-pinene + OH system and was suggested to undergo quick unimolecular reactions. ^{72, 74-76} Moreover, recent studies have shown that a C=C double bond in an RO2• radical is a key functionality, leading to fast unimolecular reactions.^{56,77} Thus, we suggest that R3 opens a gateway to fast unimolecular reactions, including autoxidation. The expected rate coefficient of the following unimolecular H-shift has been derived using the SAR by Vereecken and Nozière.⁵⁶ Nitrooxyperoxy radical R5 can undergo a rapid scrambling reaction to produce R6, which can either undergo a 1,5 H-shift to form R7, or be terminated via 1,6 H-shift to form carbonylnitrate C₁₀H₁₅NO₆ (P1) + OH. Similar unimolecular Hshift termination reactions are suggested for R8, R10, and R12, producing carbonylnitrates. All of these C₁₀H₁₆NO_{2n+1}• radicals (R5, R8, R10, R12) could also undergo bimolecular reactions with RO₂•/NO₃ to form C₁₀H₁₆NO_{2n}•. Taking R5 as an example, the resulting R13 followed by an H-shift leads to the formation of R14. Both the -OH group and the C=C double bond within R14 further favor fast unimolecular reactions, ⁵⁶ leading to more oxidized C₁₀H₁₆NO_{2n}• radicals via autoxidation or to the formation of P1. Note that Scheme

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

1 is just one of many possible unimolecular reaction chains, and some radicals observed in this study are not included in Scheme 1, such as the formation of C₁₀H₁₆NO₁₅•. Further rigorous studies are needed to constrain its unimolecular pathway. Additionally, the C=C double bond in some of these products can be attacked by the NO₃ radical and lead to second-generation products, which was also observed in this study and will be discussed below. Note that this is not the only pathway leading to HOM. Nah et al.³⁰ proposed a ringretaining pathway, with a simplified mechanism shown in Scheme S3a. However, this pathway cannot explain the formation of the second-generation products (e.g., C₁₀H₁₄-16N₂O₈₋₁₆) and C7 compounds in this study. Moreover, according to previous studies, ^{74, 77} the ring-opening pathway is more likely to lead to autoxidation and to HOM in many monoterpene oxidation reactions, such as α -pinene + NO₃⁷⁸ and β -pinene + OH^{72-74, 77} due to the steric hindrance for H-shift in the ring-retaining RO₂•. Particularly, for β-pinene, the yield of ring-opening RO₂• is expected to be high, as shown in the work of Vereecken and Peeters⁷² and Kaminski et al.⁷³ for the reaction of β-pinene + OH. Overall, combining our observation and the literature above, HOM formation is more likely to be formed via the ring-opening pathway in β-pinene + NO₃ reactions, although the autoxidation pathway is complex and still not fully clear in this reaction system and multiple pathways might be present simultaneously. Claflin and Ziemann²¹ proposed another ring-opening pathway (Scheme S3b). For the two ring-opening pathways, their relative importance is currently unclear. Compared to Nah et al.30 and Claflin and Ziemann,21 Scheme 1 provides a

404

405

406

407

408

409

410

411

412

413

414

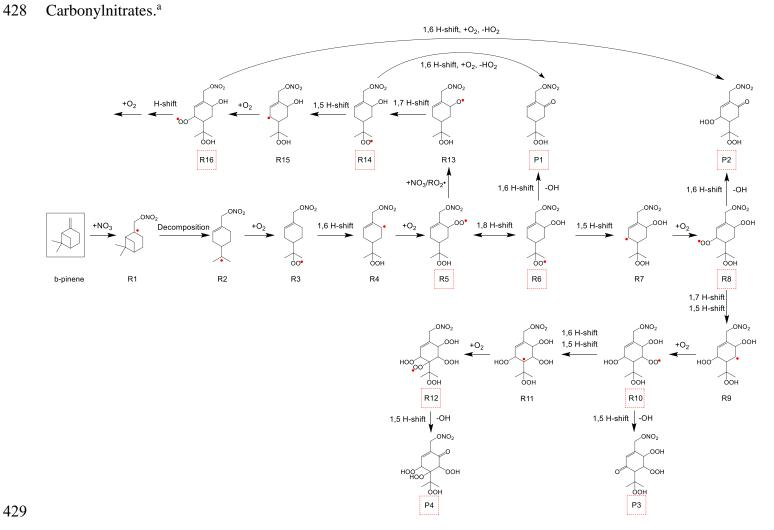
415

416

417

418

419


420

421

422

- formation pathway for RO₂• containing the C=C double bond, which leads to fast HOM-
- ON formation and provides a plausible explanation for the second-generation products
- observed in this study.

Scheme 1. Example Unimolecular Pathway Chain of β-pinene + NO₃ Reactions Leading to the Formation of HOM-ON, specifically Carbonylnitrates.^a

- 430 ^a The formula of radicals and products observed in the experiments were highlighted in red-dashed boxes. This is only a small subset of
- 431 the full oxidation mechanism omitting many competing channels and is not intended to be complete.

First-Generation C7-9 HOM-ON. Besides C10 products, C7-9 compounds were also observed in this study, including product families of C7H9-11NO8-12, C9H13-15NO8-14, and C₈H₁₁₋₁₃NO₈₋₁₂, consistent with the study by Nah et al.³⁰ These first-generation products were suggested to be formed from the decomposition of NO₃-RO• radicals followed by an autoxidation pathway. This decomposition process was already recognized as another important unimolecular reaction, forming ring-opened products. 72, 75, 78, 79 Taking C₇H₉-11NO₈₋₁₂ as an example for R3, besides the fast H-shift as shown in Scheme 1, it can undergo bimolecular reactions with RO2• or NO3 reactions forming a NO3-RO•, which will further decompose into acetone and an unsaturated NO₃-R•, such as C₇H₁₀NO₃•, ^{75, 76} as shown in Scheme S4. Radicals like C₇H₁₀NO₃• can react with O₂, forming C₇H₁₀NO₅•, which can then further undergo autoxidation. Similar to the C₁₀H₁₅₋₁₇NO₆₋₁₅ family, the C₇H₉₋₁₁NO₈₋₁₂ family followed a typical first-generation time series, with a representative radical C₇H₁₀NO₉• and its corresponding termination products shown in Figure S8. When β-pinene was added, C₇H₁₀NO₉• peaked instantaneously, followed by the formation of C₇H₉NO₈, C₇H₁₁NO₈, and C₇H₁₁NO₉. A time window of 3-4 min between the peaks of radicals and termination products was observed, indicating the typical period of the termination processes. Carbonylnitrates were again observed as the dominant termination products, suggesting termination by unimolecular Hshift and OH formation to be a major reaction pathway in the C₇H₉₋₁₁NO₈₋₁₂ family as well. Moreover, higher concentrations, as well as higher carbonylnitrate abundance, were

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

observed in $C_7H_{10}NO_{2n+1}$ • compared to $C_7H_{10}NO_{2n}$ •. This indicates that the alkoxy-peroxy channel is a minor, less competitive pathway in the $C_7H_{9-11}NO_{8-12}$ family. Additionally, a distinct increase of acetone from 0.04 ppb to 0.44 ppb was observed throughout the experiments, as shown in Figure S1. This confirms the presence of fragmentation process in β -pinene + NO_3 , such as the above discussed C_{10} decomposition to form C_7 compounds and acetone. The two remaining product families, $C_9H_{13-15}NO_{8-14}$ and $C_8H_{11-13}NO_{8-12}$, were hypothesized to be formed in a similar pathway, but the exact bond scission position is not yet known.

First-Generation Accretion Products. Three accretion product families were found to follow a typical first-generation product time series, including $C_{20}H_{32}N_2O_{9-19}$, $C_{17}H_{26}N_2O_{12-18}$, and $C_{19}H_{30}N_2O_{11-19}$. Recent studies have identified the importance of rapid reaction of $RO_{2^{\bullet}} + RO_{2^{\bullet}} \rightarrow ROOR + O_{2}$ in the formation of gas-phase accretion products. Figure S10 lists the expected accretion products produced from the above-identified NO₃-RO₂• monomers. These three accretion product families can all be explained via RO₂• self- or cross-reaction channels. Notably, $C_{20}H_{32}N_2O_{9-19}$ were the most abundant accretion products, consistent with the dominance of its corresponding parent NO₃-RO₂•. Figure 2c shows the time series of $C_{20}H_{32}N_2O_{14,16}$, formed from self-reaction of $C_{10}H_{16}NO_{8,9}$ • discussed above. Both of them peaked about 6-8 min after each β-pinene addition and decayed afterward. This is consistent with a quick formation process from RO₂• reactions. Moreover, $C_{20}H_{32}N_2O_{14}$ was the most abundant product among the $C_{20}H_{32}N_2O_{9-19}$ family.

473 Its corresponding precursor C₁₀H₁₆NO₈• also dominated among C₁₀H₁₆NO_x• as shown in Figure S11. However, it should be noted that accretion products with the same formula 474 475 could arise from cross-reactions of several combinations of RO20; for example, $C_{10}H_{16}NO_{7}$ + $C_{10}H_{16}NO_{9}$ or $C_{10}H_{16}NO_{6}$ + $C_{10}H_{16}NO_{10}$ could both contribute to 476 477 C₂₀H₃₂N₂O₁₄. Currently, we cannot quantify the relative contribution of different RO₂• 478 recombinations to the accretion products, as the reaction rate coefficients of RO2• self- or cross-reactions depend on specific RO2•, and many of them are unknown.81 The two 479 480 remaining product families, C₁₇H₂₆N₂O₁₂₋₁₈ and C₁₉H₃₀N₂O₁₁₋₁₉, showed a similar first-481 generation time series and likewise followed RO₂• self- and cross-reaction channels. 482 Second-Generation HOM-ON and Their Tormation Mechanism. Two monomer 483 families (C₁₀H₁₄₋₁₆N₂O₈₋₁₆ and C₉H₁₀₋₁₂N₂O₉₋₁₂) and two accretion product families 484 $(C_{20}H_{31}N_3O_{12-21}$ and $C_{20}H_{30}N_4O_{14-22})$, which contain two N atoms (monomers) and three or 485 more N atoms (accretion products), showed a time series differing from first-generation 486 products. They mostly showed a concentration peak after β-pinene addition at a much later 487 phase than typical first-generation products, shown in Figure S9. These compounds were 488 assigned as second-generation reaction products. Among those, C₁₀H₁₄₋₁₆N₂O₈₋₁₆ 489 dominated and were suggested to be formed via NO₃ addition to the first-generation 490 carbonylnitrates products (C₁₀H₁₅NO₆₋₁₅). As discussed above, the carbonylnitrates formed 491 via unimolecular H-shift termination reactions contain one C=C double bond, which can 492 be attacked by NO₃ radicals to form C₁₀H₁₅N₂O_x•. For example, P2 in Scheme 1 could form a tertiary dinitrooxyalkyl radical [(NO₃)₂-R•] $C_{10}H_{15}N_{2}O_{11}$ •, which will be quickly converted to a dinitrooxyperoxy radical [(NO₃)₂-RO₂•] $C_{10}H_{15}N_{2}O_{13}$ • via O₂ addition, as shown in Scheme S5. This radical can undergo a unimolecular H-shift to either propagate the radical chain or terminate it by the formation of carbonyldinitrates + OH. Via bimolecular reactions of RO₂• + RO₂•, carbonyldinitrates ($C_{10}H_{14}N_{2}O_{x}$) and hydroxydinitrates ($C_{10}H_{16}N_{2}O_{x}$) can be formed, and hydroperoxydinitrates ($C_{10}H_{16}N_{2}O_{x}$) can be formed via RO₂• + HO₂•. These second-generation HOM-ON have not been reported in previous β -pinene + NO₃ studies because these studies mainly focused on the first-generation products and/or used different analysis methods.^{20, 21, 30} The observation of these dinitrates in this study highlighted the importance of the C=C double bond formed in R2 in Scheme 1.

Accretion products, such as $C_{20}H_{31}N_3O_{12-21}$ and $C_{20}H_{30}N_4O_{14-22}$, were also observed and are generated from self- or cross-reactions of later generation RO_2 •, likely formed via reactions of $C_{10}H_{15}N_2O_x$ • + $C_{10}H_{16}NO_x$ • and $C_{10}H_{15}N_2O_x$ • + $C_{10}H_{15}N_2O_x$ •, respectively. Figure 3a shows the time series of a typical (NO₃)₂-RO₂• $C_{10}H_{15}N_2O_9$ •, compared against that of $C_{20}H_{30}N_4O_{16}$, the accretion products resulting from its self-reaction. Both of them gradually increased after each β -pinene addition. Moreover, when $C_{10}H_{15}N_2O_9$ • reached peak concentration, the signal of $C_{20}H_{30}N_4O_{16}$ showed the largest rate of change. This is consistent with the kinetics shown in eq 2.

512
$$\frac{d[C_{20}H_{30}N_4O_{16}]}{dt} = k_r[C_{10}H_{15}N_2O_9 \bullet]^2 - k_w[C_{20}H_{30}N_4O_{16}]$$
(2)

where k_r and k_w are rate constant of C₁₀H₁₅N₂O₉• self-reaction and the wall loss rate of C₂₀H₃₀N₄O₁₆, respectively. A linear relationship between the rate of accretion products produced and the squared concentrations of RO₂• has also been reported in previous HOM studies. 6, 82 Accretion products of C₂₀H₃₁N₃O_x formed from C₁₀H₁₅N₂O_x• + C₁₀H₁₆NO_x• were also observed in this study, with the representative time series of C₂₀H₃₁N₃O₁₆ and its corresponding precursors RO₂•, C₁₀H₁₅N₂O₉• and C₁₀H₁₆NO₉•, as shown in Figure 3b. The radical C₁₀H₁₅N₂O₉• and its accretion product C₂₀H₃₁N₃O₁₆ likewise followed a time series typical of second-generation products, as well as a similar kinetic dependence. The concentrations of C₂₀H₃₁N₃O₁₆ peaked earlier than its precursor RO₂• corresponding second-generation C₁₀H₁₅N₂O₉• while C₂₀H₃₀N₄O₂₂ showed up later than C₁₀H₁₅N₂O₉•. This can be because another precursor RO₂• of C₂₀H₃₁N₃O₁₆, C₁₀H₁₆NO₉•, is a firstgeneration feature that accelerates the formation of C₂₀H₃₁N₃O₁₆. Additionally, C₂₀H₃₁N₃O₁₆ showed a small peak after β-pinene addition, especially those in third and fourth β-pinene additions. This shows that C₂₀H₃₁N₃O₁₆ followed the trend of its firstgeneration radical C₁₀H₁₆NO₉• more and indicated a role in the cross-reaction formation of C₂₀H₃₁N₃O₁₆. Overall, the above discussion on kinetics further confirms the contribution of RO₂• self- and cross-reactions to the accretion product formation in this study. Finally, we observed a family of C₉ products with second generation behavior. We suggest that the second-generation C₉H₁₀₋₁₂N₂O₉₋₁₂ was likely to be formed by a secondary NO₃ addition pathway, similarly to C₁₀H₁₄₋₁₆N₂O₈₋₁₆. However, the first generation of

513

514

515

516

517

518

519

520

521

522

523

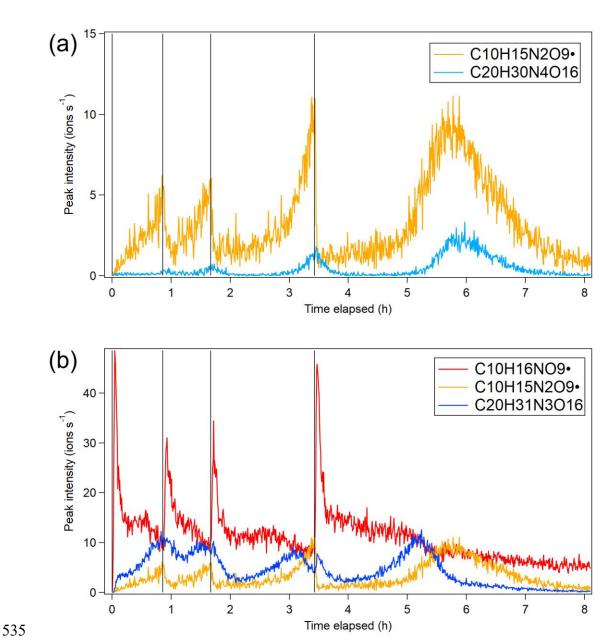
524

525

526

527

528


529

530

531

unsaturated C_9 compounds from β -pinene + NO_3 was not detected with our technique, such

that the detailed formation mechanism of C₉H₁₀₋₁₂N₂O₉₋₁₂ cannot be elucidated at this time.

Figure 3. Time series of (a) a representative second-generation peroxy radical $(C_{10}H_{15}N_2O_{12}^{\bullet},$ orange) and its self-reaction accretion product $(C_{20}H_{30}N_4O_{16},$ cyan), and (b) $C_{20}H_{31}N_3O_{16}$ (navy) resulting from the cross-reaction of $C_{10}H_{15}N_2O_{12}^{\bullet}$ (orange) and $C_{10}H_{16}NO_{9}^{\bullet}$ (red). The four vertical markers indicate β-pinene additions into the chamber. All signals were averaged over binned 30 s intervals for plotting.

Production Yield Determination. The molar yield of HOM-ON (O≥6) in the NO₃ oxidation of β -pinene was estimated to be 4.8% (-2.6%/+5.6%). The large uncertainty in HOM yield is attributed to a number of factors, including the HOM-ON peak intensity, β pinene concentration, calibration factor, and transmission efficiency, as described in the Experimental and Methods section and the SI. Note that the HOM produced during this short reaction time (10 min) consists of 93.4% first-generation products and 4.4% secondgeneration products. This reported value refers to a primary HOM yield. Compared to molar yields of HOM from β-pinene oxidation by O₃ or OH radicals (<0.1%), ^{6,83} the NO₃ radical is exceptionally efficient in oxidizing β-pinene to produce HOM. Moreover, the average value of all currently determined HOM yields is around 5%, including OH, O₃, and Cl systems. ^{27, 84} This means the reaction of β-pinene + NO₃ is competitive enough to produce a sizable fraction of the HOM products. Using the signal-weighted average of the mass of the produced HOM-ON (353.7 g mol⁻¹), we estimate the mass yields to be roughly 2.6 (=353.7 g mol⁻¹ / 136.1 g mol⁻¹) times the molar yield. The value in this study is slightly larger than the factor 2.4 calculated for the α -pinene ozonolysis system.⁶ This indicates that reactions with NO₃ radicals lead to higher mass oxidation products, as expected, and contribute more to SOA than ozonolysis reactions. The converted mass yields of HOM-ON from β-pinene + NO₃ were averaged to 12.5% (-6.8%/+14.6%), assuming that the volatility of HOM-ON was low enough to condense irreversibly onto the particle phase.⁶, 45 Considering the SOA yields of $\beta\text{-pinene}$ + NO3, $^{18\text{-}20,\ 22,\ 23,\ 26}$ these HOM-ON should

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

contribute a significant fraction, especially at low organic aerosol loadings in ambient atmosphere. Note that the volatility of HOM-ON was not determined in this study. Yet Pullinen et al. 45 determined a range of 0.5-1 for effective uptake coefficients of HOM-ON from β -pinene + OH. Therefore, it is reasonable to approximate the uptake of most of the HOM-ON as being irreversible when estimating their contribution to SOA. Even an uptake coefficient of 0.5 would cause HOM to condense efficiently on particles. Assuming that all HOM condensing on particles provides an upper limit of the contribution of HOM-ON to SOA, and most of HOM will thus reside in the particle phase. Although HOM-ON in this study are not identical to those in Pullinen et al., 45 they are expected to have generally similar structures, and HOM-ON contribution to SOA formation is considered to be significant in β -pinene + NO₃ reactions.

Atmospheric Implications

We observed a large number of HOM-ON formed from NO₃ oxidation of β-pinene in the SAPHIR chamber, including six monomer (C=7-10, N=1-2, O=6-16) and five accretion product (C=17-20, N=2-4, O=9-22) families. An example formation mechanism was proposed and constrained based on the time series of the closed-shell HOM, which were different for first- and second-generation products and depended on the precursor RO₂•. Such HOM-ON are expected to be formed under the conditions of the nocturnal planetary boundary layer (PBL), especially when both biogenic VOC and anthropogenic NO_x sources are present. Recent field studies have shown that these HOM-ON are prevalent at night-

time in the Southeastern US and contribute to a large fraction of SOA.^{13, 15} The precursor peroxy radicals, especially C₁₀H₁₆NO₉•, formed from monoterpene + NO₃ are observed at night-time in SORPES station in eastern China, where the BVOC oxidation is strongly influenced by NO_x.⁸⁵

Direct experimental evidence was provided in our study to highlight the importance of the unimolecular H-shift termination pathway in the NO₃ system, producing unsaturated carbonylnitrates as first-generation products, similar to OH systems.^{32, 55, 74} We expect that a large portion of HOM-ON formed at night-time in the ambient atmosphere over a forest environment affected by anthropogenic emissions contains a carbonyl group and one or more -OOH groups, in addition to the initiating -NO₃ group. These unsaturated first-generation carbonylnitrates are anticipated to react further with additional NO₃ and lead to the formation of second-generation products. Although some studies found that second-generation ON containing two or more nitrogens were much less abundant than mononitrates, ⁸⁶ second-generation products might be important when NO₃ is abundant or during the next day when unsaturated carbonylnitrate can react with OH.

The production yields of HOM-ON from β -pinene + NO₃ were estimated with a mean molar yield of 4.8% (-2.6%/+5.6%). This yield is much higher than the HOM yield in β -pinene oxidation by OH (0.58%) and O₃ (0.12%) reported by Jokinen et al.⁸³ and HOM yield in the isoprene oxidation by NO₃ (1.2%).⁸⁷ This higher HOM yield of β -pinene + NO₃ indicated the potential significance of HOM-ON to the formation of SOA in the

nocturnal PBL in areas influenced by biogenic VOC and anthropogenic NO_x emissions as observed by a number of field studies. ⁸⁸ Incorporating the HOM-ON yield determined in this study into future models can lead to a better interpretation of ambient data and a more accurate prediction of atmospheric and climate effects of β-pinene + NO₃ reactions. Furthermore, negligible second-generation products are included in the production yield. It is unclear that whether their contribution to HOM yields will outweigh the first-generation products and further influence the SOA formation in the ambient atmosphere. Further laboratory studies and field observations are needed.

SUPPORTING INFORMATION

Additional information deriving the calibration coefficient of CIMS and HOM yields (Section S1) and calculations of RO₂• bimolecular loss rates (Section S2); figures showing the experimental procedure (Figure S1); relative contributions of reactions of β-pinene with NO₃ and O₃ to total β-pinene loss (Figure S2); SMPS data (Figure S3); the average mass spectrum of each experimental period (Figure S4); time series of residuals (Figure S5); RO₂• bimolecular loss rates (Figure S6); peroxy radicals of C₁₀H₁₆NO_x• (Figure S7); C7 compounds (Figure S8); second-generation products (Figure S9); and permutation reactions of identified first-generation NO₃-RO₂• radicals (Figure S10) and C₁₀H₁₆NO_x• (Figure S11). Schemes demonstrating HOM formation mechanism involving RO₂• (Scheme S1); general autoxidation of NO₃ oxidation of β-pinene (Scheme S2); the simplified HOM formation pathway proposed in prior studies (Scheme S3); the possible

- 621 formation pathway of C7 compounds (Scheme S4); and example formation pathway of
- second-generation products (Scheme S5); tables listing HR peak list (Table S1); reaction
- rates used to calculate RO₂• bimolecular loss rates (Table S2); and relative intensities of
- 624 the C₇H₉₋₁₁NO₈₋₁₂ product family (Table S3).

625 ACKNOWLEDGMENTS

- 626 The authors thank the SAPHIR team for supporting our measurements and providing
- helpful data. H.S and D.Z would like to thank the funding support of the National Natural
- 628 Science Foundation of China (41875145) and Science and Technology Commission of
- 629 Shanghai Municipality (20230711400).

630 REFERENCES

- 631 (1) Sindelarova, K.; Granier, C.; Bouarar, I.; Guenther, A.; Tilmes, S.; Stavrakou, T.;
- Müller, J. F.; Kuhn, U.; Stefani, P.; Knorr, W., Global data set of biogenic VOC emissions
- calculated by the MEGAN model over the last 30 years. Atmos. Chem. Phys. 2014, 14 (17),
- 634 9317-9341.
- 635 (2) Berndt, T.; Richters, S.; Jokinen, T.; Hyttinen, N.; Kurtén, T.; Otkjær, R. V.; Kjaergaard,
- 636 H. G.; Stratmann, F.; Herrmann, H.; Sipilä, M.; Kulmala, M.; Ehn, M., Hydroxyl radical-
- 637 induced formation of highly oxidized organic compounds. *Nat. Commun.* **2016**, 7, 13677.
- 638 (3) Surratt, J. D.; Chan, A. W. H.; Eddingsaas, N. C.; Chan, M. N.; Loza, C. L.; Kwan, A.
- 639 J.; Hersey, S. P.; Flagan, R. C.; Wennberg, P. O.; Seinfeld, J. H., Reactive intermediates
- 640 revealed in secondary organic aerosol formation from isoprene. Proc. Natl. Acad. Sci.
- 641 *U.S.A.* **2010**, *107* (15), 6640-6645.
- 642 (4) Brown, S. S.; Stutz, J., Nighttime radical observations and chemistry. Chem. Soc. Rev.
- 643 **2012**, *41* (19), 6405-6447.
- 644 (5) Ng, N. L.; Brown, S. S.; Archibald, A. T.; Atlas, E.; Cohen, R. C.; Crowley, J. N.; Day,
- D. A.; Donahue, N. M.; Fry, J. L.; Fuchs, H.; Griffin, R. J.; Guzman, M. I.; Herrmann, H.;
- 646 Hodzic, A.; Iinuma, Y.; Jimenez, J. L.; Kiendler-Scharr, A.; Lee, B. H.; Luecken, D. J.;
- Mao, J. Q.; McLaren, R.; Mutzel, A.; Osthoff, H. D.; Ouyang, B.; Picquet-Varrault, B.;
- Platt, U.; Pye, H. O. T.; Rudich, Y.; Schwantes, R. H.; Shiraiwa, M.; Stutz, J.; Thornton, J.
- 649 A.; Tilgner, A.; Williams, B. J.; Zaveri, R. A., Nitrate radicals and biogenic volatile organic

- 650 compounds: oxidation, mechanisms, and organic aerosol. Atmos. Chem. Phys. 2017, 17
- 651 (3), 2103-2162.
- 652 (6) Ehn, M.; Thornton, J. A.; Kleist, E.; Sipilä, M.; Junninen, H.; Pullinen, I.; Springer, M.;
- Rubach, F.; Tillmann, R.; Lee, B.; Lopez-Hilfiker, F.; Andres, S.; Acir, I. H.; Rissanen, M.;
- Jokinen, T.; Schobesberger, S.; Kangasluoma, J.; Kontkanen, J.; Nieminen, T.; Kurtén, T.;
- Nielsen, L. B.; Jørgensen, S.; Kjaergaard, H. G.; Canagaratna, M.; Dal Maso, M.; Berndt,
- 656 T.; Petäjä, T.; Wahner, A.; Kerminen, V. M.; Kulmala, M.; Worsnop, D. R.; Wildt, J.;
- Mentel, T. F., A large source of low-volatility secondary organic aerosol. *Nature* **2014**, *506*
- 658 (7489), 476-479.
- 659 (7) Tröstl, J.; Chuang, W. K.; Gordon, H.; Heinritzi, M.; Yan, C.; Molteni, U.; Ahlm, L.;
- Frege, C.; Bianchi, F.; Wagner, R.; Simon, M.; Lehtipalo, K.; Williamson, C.; Craven, J.
- 661 S.; Duplissy, J.; Adamov, A.; Almeida, J.; Bernhammer, A. K.; Breitenlechner, M.; Brilke,
- 662 S.; Dias, A.; Ehrhart, S.; Flagan, R. C.; Franchin, A.; Fuchs, C.; Guida, R.; Gysel, M.;
- Hansel, A.; Hoyle, C. R.; Jokinen, T.; Junninen, H.; Kangasluoma, J.; Keskinen, H.; Kim,
- J.; Krapf, M.; Kürten, A.; Laaksonen, A.; Lawler, M.; Leiminger, M.; Mathot, S.; Möhler,
- O.; Nieminen, T.; Onnela, A.; Petäjä, T.; Piel, F. M.; Miettinen, P.; Rissanen, M. P.; Rondo,
- 666 L.; Sarnela, N.; Schobesberger, S.; Sengupta, K.; Sipilä, M.; Smith, J. N.; Steiner, G.; Tomè,
- A.; Virtanen, A.; Wagner, A. C.; Weingartner, E.; Wimmer, D.; Winkler, P. M.; Ye, P. L.;
- 668 Carslaw, K. S.; Curtius, J.; Dommen, J.; Kirkby, J.; Kulmala, M.; Riipinen, I.; Worsnop, D.
- R.; Donahue, N. M.; Baltensperger, U., The role of low-volatility organic compounds in
- initial particle growth in the atmosphere. *Nature* **2016**, *533* (7604), 527-531.
- 671 (8) Hallquist, M.; Wenger, J. C.; Baltensperger, U.; Rudich, Y.; Simpson, D.; Claeys, M.;
- Dommen, J.; Donahue, N. M.; George, C.; Goldstein, A. H.; Hamilton, J. F.; Herrmann,
- 673 H.; Hoffmann, T.; Iinuma, Y.; Jang, M.; Jenkin, M. E.; Jimenez, J. L.; Kiendler-Scharr, A.;
- Maenhaut, W.; McFiggans, G.; Mentel, T. F.; Monod, A.; Prévôt, A. S. H.; Seinfeld, J. H.;
- 675 Surratt, J. D.; Szmigielski, R.; Wildt, J., The formation, properties and impact of secondary
- organic aerosol: current and emerging issues. Atmos. Chem. Phys. 2009, 9 (14), 5155-5236.
- 677 (9) Shrivastava, M.; Cappa, C. D.; Fan, J. W.; Goldstein, A. H.; Guenther, A. B.; Jimenez,
- 678 J. L.; Kuang, C.; Laskin, A.; Martin, S. T.; Ng, N. L.; Petaja, T.; Pierce, J. R.; Rasch, P. J.;
- Roldin, P.; Seinfeld, J. H.; Shilling, J.; Smith, J. N.; Thornton, J. A.; Volkamer, R.; Wang,
- 680 J.; Worsnop, D. R.; Zaveri, R. A.; Zelenyuk, A.; Zhang, Q., Recent advances in
- understanding secondary organic aerosol: implications for global climate forcing. Rev.
- 682 Geophys. **2017**, 55 (2), 509-559.
- 683 (10) Ng, N. L.; Kwan, A. J.; Surratt, J. D.; Chan, A. W. H.; Chhabra, P. S.; Sorooshian, A.;
- Pye, H. O. T.; Crounse, J. D.; Wennberg, P. O.; Flagan, R. C.; Seinfeld, J. H., Secondary
- organic aerosol (SOA) formation from reaction of isoprene with nitrate radicals (NO₃).
- 686 Atmos. Chem. Phys. **2008**, 8 (14), 4117-4140.
- 687 (11) Rollins, A. W.; Kiendler-Scharr, A.; Fry, J. L.; Brauers, T.; Brown, S. S.; Dorn, H. P.;
- Dubé, W. P.; Fuchs, H.; Mensah, A.; Mentel, T. F.; Rohrer, F.; Tillmann, R.; Wegener, R.;

- Wooldridge, P. J.; Cohen, R. C., Isoprene oxidation by nitrate radical: alkyl nitrate and
- 690 secondary organic aerosol yields. Atmos. Chem. Phys. 2009, 9 (18), 6685-6703.
- 691 (12) Pye, H. O. T.; Chan, A. W. H.; Barkley, M. P.; Seinfeld, J. H., Global modeling of
- organic aerosol: the importance of reactive nitrogen (NO_x and NO₃). Atmos. Chem. Phys.
- 693 **2010**, *10* (22), 11261-11276.
- 694 (13) Ayres, B. R.; Allen, H. M.; Draper, D. C.; Brown, S. S.; Wild, R. J.; Jimenez, J. L.;
- Day, D. A.; Campuzano-Jost, P.; Hu, W.; de Gouw, J.; Koss, A.; Cohen, R. C.; Duffey, K.
- 696 C.; Romer, P.; Baumann, K.; Edgerton, E.; Takahama, S.; Thornton, J. A.; Lee, B. H.;
- 697 Lopez-Hilfiker, F. D.; Mohr, C.; Wennberg, P. O.; Nguyen, T. B.; Teng, A.; Goldstein, A.
- 698 H.; Olson, K.; Fry, J. L., Organic nitrate aerosol formation via NO₃ + biogenic volatile
- organic compounds in the southeastern United States. Atmos. Chem. Phys. 2015, 15 (23),
- 700 13377-13392.
- 701 (14) Fisher, J. A.; Jacob, D. J.; Travis, K. R.; Kim, P. S.; Marais, E. A.; Miller, C. C.; Yu,
- 702 K. R.; Zhu, L.; Yantosca, R. M.; Sulprizio, M. P.; Mao, J. Q.; Wennberg, P. O.; Crounse, J.
- 703 D.; Teng, A. P.; Nguyen, T. B.; St Clair, J. M.; Cohen, R. C.; Romer, P.; Nault, B. A.;
- Wooldridge, P. J.; Jimenez, J. L.; Campuzano-Jost, P.; Day, D. A.; Hu, W. W.; Shepson, P.
- 705 B.; Xiong, F. L. Z.; Blake, D. R.; Goldstein, A. H.; Misztal, P. K.; Hanisco, T. F.; Wolfe, G.
- 706 M.; Ryerson, T. B.; Wisthaler, A.; Mikoviny, T., Organic nitrate chemistry and its
- 707 implications for nitrogen budgets in an isoprene- and monoterpene-rich atmosphere:
- 708 constraints from aircraft (SEAC(4)RS) and ground-based (SOAS) observations in the
- 709 Southeast US. Atmos. Chem. Phys. **2016**, 16 (9), 5969-5991.
- 710 (15) Xu, L.; Guo, H. Y.; Boyd, C. M.; Klein, M.; Bougiatioti, A.; Cerully, K. M.; Hite, J.
- 711 R.; Isaacman-VanWertz, G.; Kreisberg, N. M.; Knote, C.; Olson, K.; Koss, A.; Goldstein,
- 712 A. H.; Hering, S. V.; de Gouw, J.; Baumann, K.; Lee, S. H.; Nenes, A.; Weber, R. J.; Ng,
- 713 N. L., Effects of anthropogenic emissions on aerosol formation from isoprene and
- 714 monoterpenes in the southeastern United States. Proc. Natl. Acad. Sci. U.S.A. 2015, 112
- 715 (1), 37-42.
- 716 (16) Guenther, A. B.; Jiang, X.; Heald, C. L.; Sakulyanontvittaya, T.; Duhl, T.; Emmons,
- 717 L. K.; Wang, X., The model of emissions of gases and aerosols from nature version 2.1
- 718 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions.
- 719 Geosci. Model. Dev. **2012**, 5 (6), 1471-1492.
- 720 (17) Atkinson, R.; Arey, J., Atmospheric degradation of volatile organic compounds. *Chem.*
- 721 Rev. **2003**, 103 (12), 4605-4638.
- 722 (18) Griffin, R. J.; Cocker, D. R.; Flagan, R. C.; Seinfeld, J. H., Organic aerosol formation
- from the oxidation of biogenic hydrocarbons. J. Geophys. Res.: Atmos. 1999, 104 (D3),
- 724 3555-3567.
- 725 (19) Fry, J. L.; Kiendler-Scharr, A.; Rollins, A. W.; Wooldridge, P. J.; Brown, S. S.; Fuchs,
- 726 H.; Dubé, W.; Mensah, A.; dal Maso, M.; Tillmann, R.; Dorn, H. P.; Brauers, T.; Cohen, R.
- 727 C., Organic nitrate and secondary organic aerosol yield from NO₃ oxidation of beta-pinene

- evaluated using a gas-phase kinetics/aerosol partitioning model. *Atmos. Chem. Phys.* **2009**,
- 729 9 (4), 1431-1449.
- 730 (20) Boyd, C. M.; Sanchez, J.; Xu, L.; Eugene, A. J.; Nah, T.; Tuet, W. Y.; Guzman, M. I.;
- Ng, N. L., Secondary organic aerosol formation from the beta-pinene+NO₃ system: effect
- 732 of humidity and peroxy radical fate. *Atmos. Chem. Phys.* **2015**, *15* (13), 7497-7522.
- 733 (21) Claflin, M. S.; Ziemann, P. J., Identification and quantitation of aerosol products of
- 734 the reaction of beta-pinene with NO₃ radicals and implications for gas- and particle-phase
- 735 reaction mechanisms. J. Phys. Chem. A **2018**, 122 (14), 3640-3652.
- 736 (22) Fry, J. L.; Draper, D. C.; Barsanti, K. C.; Smith, J. N.; Ortega, J.; Winkle, P. M.;
- 737 Lawler, M. J.; Brown, S. S.; Edwards, P. M.; Cohen, R. C.; Lee, L., Secondary organic
- aerosol formation and organic nitrate yield from NO₃ oxidation of biogenic hydrocarbons.
- 739 Environ. Sci. Technol. 2014, 48 (20), 11944-11953.
- 740 (23) Hallquist, M.; Wängberg, I.; Ljungström, E.; Barnes, I.; Becker, K. H., Aerosol and
- 741 product yields from NO₃ radical-initiated oxidation of selected monoterpenes. *Environ. Sci.*
- 742 *Technol.* **1999**, *33* (4), 553-559.
- 743 (24) Perraud, V.; Bruns, E. A.; Ezell, M. J.; Johnson, S. N.; Greaves, J.; Finlayson-Pitts, B.
- J., Identification of organic nitrates in the NO₃ radical initiated oxidation of alpha-pinene
- by atmospheric pressure chemical ionization mass spectrometry. Environ. Sci. Technol.
- 746 **2010**, 44 (15), 5887-5893.
- 747 (25) Spittler, M.; Barnes, I.; Bejan, I.; Brockmann, K. J.; Benter, T.; Wirtz, K., Reactions
- of NO₃ radicals with limonene and alpha-pinene: product and SOA formation. Atmos.
- 749 Environ. 2006, 40 S116-S127.
- 750 (26) Lambe, A. T.; Wood, E. C.; Krechmer, J. E.; Majluf, F.; Williams, L. R.; Croteau, P.
- 751 L.; Cirtog, M.; Féron, A.; Petit, J. E.; Albinet, A.; Jimenez, J. L.; Peng, Z., Nitrate radical
- 752 generation via continuous generation of dinitrogen pentoxide in a laminar flow reactor
- 753 coupled to an oxidation flow reactor. Atmos. Meas. Tech. 2020, 13 (5), 2397-2411.
- 754 (27) Bianchi, F.; Kurtén, T.; Riva, M.; Mohr, C.; Rissanen, M. P.; Roldin, P.; Berndt, T.;
- 755 Crounse, J. D.; Wennberg, P. O.; Mentel, T. F.; Wildt, J.; Junninen, H.; Jokinen, T.; Kulmala,
- 756 M.; Worsnop, D. R.; Thornton, J. A.; Donahue, N.; Kjaergaard, H. G.; Ehn, M., Highly
- 757 oxygenated organic molecules (HOM) from gas-phase autoxidation involving peroxy
- radicals: a key contributor to atmospheric aerosol. Chem. Rev. 2019, 119 (6), 3472-3509.
- 759 (28) Huang, W.; Saathoff, H.; Shen, X. L.; Ramisetty, R.; Leisner, T.; Mohr, C., Chemical
- 760 characterization of highly functionalized organonitrates contributing to night-time organic
- aerosol mass loadings and particle growth. Environ. Sci. Technol. 2019, 53 (3), 1165-1174.
- 701 delosof mass loadings and particle grown. Environ. Sci. Technol. 2017, 35 (3), 1105 1171
- 762 (29) Kirkby, J.; Duplissy, J.; Sengupta, K.; Frege, C.; Gordon, H.; Williamson, C.;
- Heinritzi, M.; Simon, M.; Yan, C.; Almeida, J.; Tröstl, J.; Nieminen, T.; Ortega, I. K.;
- Wagner, R.; Adamov, A.; Amorim, A.; Bernhammer, A. K.; Bianchi, F.; Breitenlechner, M.;
- 765 Brilke, S.; Chen, X. M.; Craven, J.; Dias, A.; Ehrhart, S.; Flagan, R. C.; Franchin, A.; Fuchs,
- 766 C.; Guida, R.; Hakala, J.; Hoyle, C. R.; Jokinen, T.; Junninen, H.; Kangasluoma, J.; Kim,

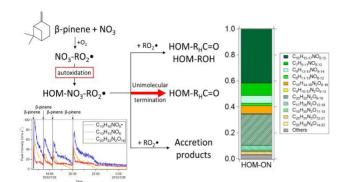
- 767 J.; Krapf, M.; Kürten, A.; Laaksonen, A.; Lehtipalo, K.; Makhmutov, V.; Mathot, S.;
- Molteni, U.; Onnela, A.; Peräkylä, O.; Piel, F.; Petäjä, T.; Praplan, A. P.; Pringle, K.; Rap,
- A.; Richards, N. A. D.; Riipinen, I.; Rissanen, M. P.; Rondo, L.; Sarnela, N.; Schobesberger,
- 770 S.; Scott, C. E.; Seinfeld, J. H.; Sipilä, M.; Steiner, G.; Stozhkov, Y.; Stratmann, F.; Tomé,
- A.; Virtanen, A.; Vogel, A. L.; Wagner, A. C.; Wagner, P. E.; Weingartner, E.; Wimmer, D.;
- Winkler, P. M.; Ye, P. L.; Zhang, X.; Hansel, A.; Dommen, J.; Donahue, N. M.; Worsnop,
- 773 D. R.; Baltensperger, U.; Kulmala, M.; Carslaw, K. S.; Curtius, J., Ion-induced nucleation
- 774 of pure biogenic particles. *Nature* **2016**, *533* (7604), 521-525.
- 775 (30) Nah, T.; Sanchez, J.; Boyd, C. M.; Ng, N. L., Photochemical aging of alpha-pinene
- and beta-pinene secondary organic aerosol formed from nitrate radical oxidation. *Environ*.
- 777 Sci. Technol. **2016**, 50 (1), 222-231.
- 778 (31) Takeuchi, M.; Ng, N. L., Chemical composition and hydrolysis of organic nitrate
- 779 aerosol formed from hydroxyl and nitrate radical oxidation of alpha-pinene and beta-
- 780 pinene. Atmos. Chem. Phys. 2019, 19 (19), 12749-12766.
- 781 (32) Crounse, J. D.; Nielsen, L. B.; Jørgensen, S.; Kjaergaard, H. G.; Wennberg, P. O.,
- Autoxidation of organic compounds in the atmosphere. J. Phys. Chem. Lett. 2013, 4 (20),
- 783 3513-3520.
- 784 (33) Mentel, T. F.; Springer, M.; Ehn, M.; Kleist, E.; Pullinen, I.; Kurtén, T.; Rissanen, M.;
- 785 Wahner, A.; Wildt, J., Formation of highly oxidized multifunctional compounds:
- 786 autoxidation of peroxy radicals formed in the ozonolysis of alkenes deduced from
- structure-product relationships. Atmos. Chem. Phys. 2015, 15 (12), 6745-6765.
- 788 (34) Bohn, B.; Rohrer, F.; Brauers, T.; Wahner, A., Actinometric measurements of NO₂
- 789 photolysis frequencies in the atmosphere simulation chamber SAPHIR. Atmos. Chem.
- 790 *Phys.* **2005**, *5* 493-503.
- 791 (35) Rohrer, F.; Bohn, B.; Brauers, T.; Brüning, D.; Johnen, F. J.; Wahner, A.; Kleffmann,
- 792 J., Characterisation of the photolytic HONO-source in the atmosphere simulation chamber
- 793 SAPHIR. Atmos. Chem. Phys. **2005**, 5 2189-2201.
- 794 (36) Sarrafzadeh, M.; Wildt, J.; Pullinen, I.; Springer, M.; Kleist, E.; Tillmann, R.; Schmitt,
- 795 S. H.; Wu, C.; Mentel, T. F.; Zhao, D. F.; Hastie, D. R.; Kiendler-Scharr, A., Impact of NO_x
- and OH on secondary organic aerosol formation from beta-pinene photooxidation. *Atmos.*
- 797 Chem. Phys. **2016**, 16 (17), 11237-11248.
- 798 (37) Zhao, D. F.; Schmitt, S. H.; Wang, M. J.; Acir, I. H.; Tillmann, R.; Tan, Z. F.; Novelli,
- 799 A.; Fuchs, H.; Pullinen, I.; Wegener, R.; Rohrer, F.; Wildt, J.; Kiendler-Scharr, A.; Wahner,
- 800 A.; Mentel, T. F., Effects of NO_x and SO₂ on the secondary organic aerosol formation from
- photooxidation of alpha-pinene and limonene. Atmos. Chem. Phys. 2018, 18 (3), 1611-
- 802 1628.
- 803 (38) Wagner, N. L.; Dubé, W. P.; Washenfelder, R. A.; Young, C. J.; Pollack, I. B.; Ryerson,
- 804 T. B.; Brown, S. S., Diode laser-based cavity ring-down instrument for NO₃, N₂O₅, NO,
- 805 NO₂ and O₃ from aircraft. Atmos. Meas. Tech. 2011, 4 (6), 1227-1240.

- 806 (39) Saunders, S. M.; Jenkin, M. E.; Derwent, R. G.; Pilling, M. J., Protocol for the
- 807 development of the Master Chemical Mechanism, MCM v3 (Part A): tropospheric
- degradation of non-aromatic volatile organic compounds. Atmos. Chem. Phys. 2003, 3 161-
- 809 180.
- 810 (40) Hyttinen, N.; Rissanen, M. P.; Kurtén, T., Computational comparison of acetate and
- 811 nitrate chemical ionization of highly oxidized cyclohexene ozonolysis intermediates and
- 812 products. J. Phys. Chem. A. **2017**, 121 (10), 2172-2179.
- 813 (41) Draper, D. C.; Myllys, N.; Hyttinen, N.; Møller, K. H.; Kjaergaard, H. G.; Fry, J. L.;
- 814 Smith, J. N.; Kurtén, T., Formation of highly oxidized molecules from NO₃ radical initiated
- oxidation of delta-3-carene: a mechanistic study. ACS Earth Space Chem. 2019, 3 (8),
- 816 1460-1470.
- 817 (42) Massoli, P.; Stark, H.; Canagaratna, M. R.; Krechmer, J. E.; Xu, L.; Ng, N. L.;
- Mauldin, R. L.; Yan, C.; Kimmel, J.; Misztal, P. K.; Jimenez, J. L.; Jayne, J. T.; Worsnop,
- D. R., Ambient measurements of highly oxidized gas-phase molecules during the Southern
- 820 Oxidant and Aerosol Study (SOAS) 2013. ACS Earth Space Chem. 2018, 2 (7), 653-672.
- 821 (43) Wennberg, P. O.; Bates, K. H.; Crounse, J. D.; Dodson, L. G.; McVay, R. C.; Mertens,
- L. A.; Nguyen, T. B.; Praske, E.; Schwantes, R. H.; Smarte, M. D.; St Clair, J. M.; Teng, A.
- 823 P.; Zhang, X.; Seinfeld, J. H., Gas-phase reactions of isoprene and its major oxidation
- 824 products. Chem. Rev. 2018, 118 (7), 3337-3390.
- 825 (44) Zhao, D. F.; Pullinen, I.; Fuchs, H.; Schrade, S.; Wu, R. R.; Acir, I. H.; Tillmann, R.;
- 826 Rohrer, F.; Wildt, J.; Guo, Y. D.; Kiendler-Scharr, A.; Wahner, A.; Kang, S.; Vereecken, L.;
- 827 Mentel, T. F., Highly oxygenated organic molecule (HOM) formation in the isoprene
- 828 oxidation by NO₃ radical. *Atmos. Chem. Phys.* **2021**, *21* (12), 9681-9704.
- 829 (45) Pullinen, I.; Schmitt, S.; Kang, S.; Sarrafzadeh, M.; Schlag, P.; Andres, S.; Kleist, E.;
- Mentel, T. F.; Rohrer, F.; Springer, M.; Tillmann, R.; Wildt, J.; Wu, C.; Zhao, D. F.; Wahner,
- 831 A.; Kiendler-Scharr, A., Impact of NO_x on secondary organic aerosol (SOA) formation
- from alpha-pinene and beta-pinene photooxidation: the role of highly oxygenated organic
- 833 nitrates. Atmos. Chem. Phys. **2020**, 20 (17), 10125-10147.
- 834 (46) Zhao, D. F.; Kaminski, M.; Schlag, P.; Fuchs, H.; Acir, I. H.; Bohn, B.; Häseler, R.;
- 835 Kiendler-Scharr, A.; Rohrer, F.; Tillmann, R.; Wang, M. J.; Wegener, R.; Wildt, J.; Wahner,
- 836 A.; Mentel, T. F., Secondary organic aerosol formation from hydroxyl radical oxidation
- 837 and ozonolysis of monoterpenes. *Atmos. Chem. Phys.* **2015**, *15* (2), 991-1012.
- 838 (47) Huang, Y. L.; Zhao, R.; Charan, S. M.; Kenseth, C. M.; Zhang, X.; Seinfeld, J. H.,
- 839 Unified theory of vapor-wall mass transport in teflon-walled environmental chambers.
- 840 Environ. Sci. Technol. **2018**, *52* (4), 2134-2142.
- 841 (48) Riva, M.; Rantala, P.; Krechmer, J. E.; Peräkylä, O.; Zhang, Y. J.; Heikkinen, L.;
- 642 Garmash, O.; Yan, C.; Kulmala, M.; Worsnop, D.; Ehn, M., Evaluating the performance of
- 843 five different chemical ionization techniques for detecting gaseous oxygenated organic
- 844 species. Atmos. Meas. Tech. 2019, 12 (4), 2403-2421.

- 845 (49) Lee, B. H.; Lopez-Hilfiker, F. D.; Mohr, C.; Kurtén, T.; Worsnop, D. R.; Thornton, J.
- 846 A., An iodide-adduct high-resolution time-of-flight chemical-ionization mass
- spectrometer: application to atmospheric inorganic and organic compounds. *Environ. Sci.*
- 848 *Technol.* **2014**, *48* (11), 6309-6317.
- 849 (50) Jenkin, M. E.; Valorso, R.; Aumont, B.; Rickard, A. R., Estimation of rate coefficients
- 850 and branching ratios for reactions of organic peroxy radicals for use in automated
- 851 mechanism construction. *Atmos. Chem. Phys.* **2019**, *19* (11), 7691-7717.
- 852 (51) Wang, S. Y.; Pratt, K. A., Molecular halogens above the arctic snowpack: emissions,
- diurnal variations, and recycling mechanisms. J. Geophys. Res.: Atmos. 2017, 122 (21),
- 854 11991-12007.
- 855 (52) Vereecken, L.; Francisco, J. S., Theoretical studies of atmospheric reaction
- 856 mechanisms in the troposphere. *Chem. Soc. Rev.* **2012**, *41* (19), 6259-6293.
- 857 (53) Vereecken, L.; Peeters, J., A structure-activity relationship for the rate coefficient of
- H-migration in substituted alkoxy radicals. Phys. Chem. Chem. Phys. 2010, 12 (39), 12608-
- 859 12620.
- 860 (54) Praske, E.; Otkjær, R. V.; Crounse, J. D.; Hethcox, J. C.; Stoltz, B. M.; Kjaergaard, H.
- 861 G.; Wennberg, P. O., Atmospheric autoxidation is increasingly important in urban and
- 862 suburban North America. *Proc. Natl. Acad. Sci. U.S.A.* **2018**, *115* (1), 64-69.
- 863 (55) Rissanen, M. P.; Kurtén, T.; Sipilä, M.; Thornton, J. A.; Kangasluoma, J.; Sarnela, N.;
- Junninen, H.; Jørgensen, S.; Schallhart, S.; Kajos, M. K.; Taipale, R.; Springer, M.; Mentel,
- T. F.; Ruuskanen, T.; Petäjä, T.; Worsnop, D. R.; Kjaergaard, H. G.; Ehn, M., The formation
- of highly oxidized multifunctional products in the ozonolysis of cyclohexene. J. Am. Chem.
- 867 Soc. **2014**, 136 (44), 15596-15606.
- 868 (56) Vereecken, L.; Nozière, B., H migration in peroxy radicals under atmospheric
- 869 conditions. Atmos. Chem. Phys. **2020**, 20 (12), 7429-7458.
- 870 (57) Atkinson, R.; Arey, J.; Aschmann, S. M., Atmospheric chemistry of alkanes: review
- and recent developments. *Atmos. Environ.* **2008**, *42* (23), 5859-5871.
- 872 (58) Yeh, G. K.; Claflin, M. S.; Ziemann, P. J., Products and mechanism of the reaction of
- 873 1-pentadecene with NO₃ radicals and the effect of a -ONO₂ group on alkoxy radical
- 874 decomposition. J. Phys. Chem. A **2015**, 119 (43), 10684-10696.
- 875 (59) Kroll, J. H.; Seinfeld, J. H., Chemistry of secondary organic aerosol: formation and
- evolution of low-volatility organics in the atmosphere. Atmos. Environ. 2008, 42 (16),
- 877 3593-3624.
- 878 (60) Novelli, A.; Cho, C.; Fuchs, H.; Hofzumahaus, A.; Rohrer, F.; Tillmann, R.; Kiendler-
- 879 Scharr, A.; Wahner, A.; Vereecken, L., Experimental and theoretical study on the impact of
- a nitrate group on the chemistry of alkoxy radicals. Phys. Chem. Chem. Phys. 2021, 23 (9),
- 881 5474-5495.

- 882 (61) Vereecken, L.; Peeters, J., Decomposition of substituted alkoxy radicals-part I: a
- generalized structure-activity relationship for reaction barrier heights. *Phys. Chem. Chem.*
- 884 *Phys.* **2009**, *11* (40), 9062-9074.
- 885 (62) Lachowicz, D. R.; Kreuz, K. L., Peroxy nitrates. Unstable products of olefin nitration
- with dinitrogen tetroxide in the presence of oxygen. New route to .alpha.-nitroketones. J.
- 887 Org. Chem. 1967, 32 (12), 3885-3888.
- 888 (63) Bennett, J. E.; Summers, R., Product studies of the mutual termination reactions of
- sec-alkylperoxy radicals: evidence for non-cyclic termination. Can. J. Chem. 1974, 52 (8),
- 890 1377-1379.
- 891 (64) Chim, M. M.; Cheng, C. T.; Davies, J. F.; Berkemeier, T.; Shiraiwa, M.; Zuend, A.;
- 892 Chan, M. N., Compositional evolution of particle-phase reaction products and water in the
- heterogeneous OH oxidation of model aqueous organic aerosols. Atmos. Chem. Phys. 2017,
- 894 17 (23), 14415-14431.
- 895 (65) Jenkin, M. E.; Saunders, S. M.; Pilling, M. J., The tropospheric degradation of volatile
- organic compounds: a protocol for mechanism development. Atmos. Environ. 1997, 31 (1),
- 897 81-104.
- 898 (66) Junninen, H.; Ehn, M.; Petäjä, T.; Luosujarvi, L.; Kotiaho, T.; Kostiainen, R.; Rohner,
- 899 U.; Gonin, M.; Fuhrer, K.; Kulmala, M.; Worsnop, D. R., A high-resolution mass
- spectrometer to measure atmospheric ion composition. Atmos. Meas. Tech. 2010, 3 (4),
- 901 1039-1053.
- 902 (67) Paulot, F.; Crounse, J. D.; Kjaergaard, H. G.; Kürten, A.; St Clair, J. M.; Seinfeld, J.
- 903 H.; Wennberg, P. O., Unexpected epoxide formation in the gas-phase photooxidation of
- 904 isoprene. *Science* **2009**, *325* (5941), 730-733.
- 905 (68) Praske, E.; Otkjær, R. V.; Crounse, J. D.; Hethcox, J. C.; Stoltz, B. M.; Kjaergaard, H.
- 906 G.; Wennberg, P. O., Intramolecular hydrogen shift chemistry of hydroperoxy-substituted
- 907 peroxy radicals. J. Phys. Chem. A **2019**, 123 (2), 590-600.
- 908 (69) Miyoshi, A., Systematic computational study on the unimolecular reactions of
- alkylperoxy (RO₂), hydroperoxyalkyl (QOOH), and hydroperoxyalkylperoxy (O₂QOOH)
- 910 radicals. J. Phys. Chem. A **2011**, 115 (15), 3301-3325.
- 911 (70) Peeters, J.; Müller, J. F.; Stavrakou, T.; Nguyen, V. S., Hydroxyl radical recycling in
- 912 isoprene oxidation driven by hydrogen bonding and hydrogen tunneling: the upgraded
- 913 LIM1 mechanism. J. Phys. Chem. A **2014**, 118 (38), 8625-8643.
- 914 (71) Kerdouci, J.; Picquet-Varrault, B.; Doussin, J. F., Prediction of rate constants for gas-
- 915 phase reactions of nitrate radical with organic compounds: a new structure-activity
- 916 relationship. Chem. Phys. Chem. 2010, 11 (18), 3909-3920.
- 917 (72) Vereecken, L.; Peeters, J., A theoretical study of the OH-initiated gas-phase oxidation
- 918 mechanism of β-pinene (C₁₀H₁₆): first generation products. *Phys. Chem. Chem. Phys.* **2012**,
- 919 14 (11), 3802-3815.

- 920 (73) Kaminski, M.; Fuchs, H.; Acir, I. H.; Bohn, B.; Brauers, T.; Dorn, H. P.; Häseler, R.;
- 921 Hofzumahaus, A.; Li, X.; Lutz, A.; Nehr, S.; Rohrer, F.; Tillmann, R.; Vereecken, L.;
- Wegener, R.; Wahner, A., Investigation of the beta-pinene photooxidation by OH in the
- atmosphere simulation chamber SAPHIR. Atmos. Chem. Phys. 2017, 17 (11), 6631-6650.
- 924 (74) Xu, L.; Møller, K. H.; Crounse, J. D.; Otkjær, R. V.; Kjaergaard, H. G.; Wennberg, P.
- 925 O., Unimolecular reactions of peroxy radicals formed in the oxidation of alpha-pinene and
- 926 beta-pinene by hydroxyl radicals. J. Phys. Chem. A **2019**, 123 (8), 1661-1674.
- 927 (75) Vereecken, L.; Peeters, J., Theoretical study of the formation of acetone in the OH-
- 928 initiated atmospheric oxidation of alpha-pinene. J. Phys. Chem. A. 2000, 104 (47), 11140-
- 929 11146.
- 930 (76) Peeters, J.; Vereecken, L.; Fantechi, G., The detailed mechanism of the OH-initiated
- atmospheric oxidation of alpha-pinene: a theoretical study. Phys. Chem. Chem. Phys. 2001,
- 932 3 (24), 5489-5504.
- 933 (77) Møller, K. H.; Otkjær, R. V.; Chen, J.; Kjaergaard, H. G., Double bonds are key to fast
- 934 unimolecular reactivity in first-generation monoterpene hydroxy peroxy radicals. J. Phys.
- 935 Chem. A **2020**, 124 (14), 2885-2896.
- 936 (78) Kurtén, T.; Møller, K. H.; Nguyen, T. B.; Schwantes, R. H.; Misztal, P. K.; Su, L. P.;
- 937 Wennberg, P. O.; Fry, J. L.; Kjaergaard, H. G., Alkoxy radical bond scissions explain the
- 938 anomalously low secondary organic aerosol and organonitrate yields from alpha-pinene +
- 939 NO₃. J. Phys. Chem. Lett. **2017**, 8 (13), 2826-2834.
- 940 (79) Fouqueau, A.; Cirtog, M.; Cazaunau, M.; Pangui, E.; Doussin, J. F.; Picquet-Varrault,
- 941 B., A comparative and experimental study of the reactivity with nitrate radical of two
- 942 terpenes: alpha-terpinene and gamma-terpinene. Atmos. Chem. Phys. 2020, 20 (23), 15167-
- 943 15189.
- 944 (80) Berndt, T.; Mender, B.; Scholz, W.; Fischer, L.; Herrmann, H.; Kulmala, M.; Hansel,
- 945 A., Accretion product formation from ozonolysis and OH radical reaction of alpha-pinene:
- mechanistic insight and the influence of isoprene and ethylene. *Environ. Sci. Technol.* **2018**,
- 947 *52* (19), 11069-11077.
- 948 (81) Berndt, T.; Scholz, W.; Mentler, B.; Fischer, L.; Herrmann, H.; Kulmala, M.; Hansel,
- 949 A., Accretion product formation from self- and cross-reactions of RO₂ radicals in the
- 950 atmosphere. Angew. Chem., Int. Ed. 2018, 57 (14), 3820-3824.
- 951 (82) Zhao, Y.; Thornton, J. A.; Pye, H. O. T., Quantitative constraints on autoxidation and
- 952 dimer formation from direct probing of monoterpene-derived peroxy radical chemistry.
- 953 *Proc. Natl. Acad. Sci. U.S.A.* **2018**, *115* (48), 12142-12147.
- 954 (83) Jokinen, T.; Berndt, T.; Makkonen, R.; Kerminen, V. M.; Junninen, H.; Paasonen, P.;
- 955 Stratmann, F.; Herrmann, H.; Guenther, A. B.; Worsnop, D. R.; Kulmala, M.; Ehn, M.;
- 956 Sipilä, M., Production of extremely low volatile organic compounds from biogenic
- 957 emissions: measured yields and atmospheric implications. Proc. Natl. Acad. Sci. U.S.A.
- 958 **2015**, *112* (23), 7123-7128.


- 959 (84) Wang, Y. H.; Riva, M.; Xie, H. B.; Heikkinen, L.; Schallhart, S.; Zha, Q. Z.; Yan, C.;
- 960 He, X. C.; Peräkylä, O.; Ehn, M., Formation of highly oxygenated organic molecules from
- 961 chlorine-atom-initiated oxidation of alpha-pinene. Atmos. Chem. Phys. 2020, 20 (8), 5145-
- 962 5155.
- 963 (85) Liu, Y.; Nie, W.; Li, Y.; Ge, D.; Liu, C.; Xu, Z.; Chen, L.; Wang, T.; Wang, L.; Sun, P.;
- 964 Qi, X.; Wang, J.; Xu, Z.; Yuan, J.; Yan, C.; Zhang, Y.; Huang, D.; Wang, Z.; Donahue, N.
- 965 M.; Worsnop, D.; Chi, X.; Ehn, M.; Ding, A., Formation of condensable organic vapors
- 966 from anthropogenic and biogenic VOCs is strongly perturbed by NO_x in eastern China.
- 967 Atmos. Chem. Phys. **2021**, 21, 14789-14814.
- 968 (86) Roldin, P.; Ehn, M.; Kurtén, T.; Olenius, T.; Rissanen, M. P.; Sarnela, N.; Elm, J.;
- Rantala, P.; Hao, L. Q.; Hyttinen, N.; Heikkinen, L.; Worsnop, D. R.; Pichelstorfer, L.;
- 970 Xavier, C.; Clusius, P.; Öström, E.; Petäjä, T.; Kulmala, M.; Vehkamäki, H.; Virtanen, A.;
- 971 Riipinen, I.; Boy, M., The role of highly oxygenated organic molecules in the boreal
- aerosol-cloud-climate system. Nat. Commun. 2019, 10, 4370.
- 973 (87) Pye, H. O. T.; D'Ambro, E. L.; Lee, B.; Schobesberger, S.; Takeuchi, M.; Zhao, Y.;
- 974 Lopez-Hilfiker, F.; Liu, J. M.; Shilling, J. E.; Xing, J.; Mathur, R.; Middlebrook, A. M.;
- 975 Liao, J.; Welti, A.; Graus, M.; Warneke, C.; de Gouw, J. A.; Holloway, J. S.; Ryerson, T.
- 976 B.; Pollack, I. B.; Thornton, J. A., Anthropogenic enhancements to production of highly
- 977 oxygenated molecules from autoxidation. Proc. Natl. Acad. Sci. U.S.A. 2019, 116 (14),
- 978 6641-6646.
- 979 (88) Weber, J.; Archer-Nicholls, S.; Griffiths, P.; Berndt, T.; Jenkin, M.; Gordon, H.; Knote,
- 980 C.; Archibald, A. T., CRI-HOM: A novel chemical mechanism for simulating highly
- 981 oxygenated organic molecules (HOMs) in global chemistry-aerosol-climate models.
- 982 Atmos. Chem. Phys. **2020**, 20 (18), 10889-10910.

1 Highly oxygenated organic nitrates formed from

2 NO₃ radical initiated oxidation of β-pinene

- 3 Hongru Shen,¹ Defeng Zhao,^{1,2,3,4*} Iida Pullinen,^{2, a} Sungah Kang,² Luc Vereecken,²
- 4 Hendrik Fuchs,² Ismail-Hakki Acir,^{2,b} Ralf Tillmann,² Franz Rohrer,² Jürgen Wildt,² Astrid
- 5 Kiendler-Scharr, Andreas Wahner, Thomas F. Mentel^{2*}
- 6 Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences,
- 7 Fudan University, 200438, Shanghai, China;
- 8 ² Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum
- 9 Jülich, 52425, Jülich, Germany;
- ³ Big Data Institute for Carbon Emission and Environmental Pollution, Fudan University,
- 11 Shanghai 200438, China.
- 12 ⁴ Institute of Eco-Chongming (IEC), 20 Cuiniao Road., Chenjia Zhen, Chongming,
- 13 Shanghai 202162, China
- ^a Now at: Department of Applied Physics, University of Eastern Finland, Kuopio, 70210,
- 15 Finland.
- 16 b Now at: Institute of Nutrition and Food Sciences, University of Bonn, Bonn, 53115,
- 17 Germany.
- *Corresponding authors: dfzhao@fudan.edu.cn, t.mentel@fz-juelich.de

20 Table of Contents (TOC)

Abstract

23

- 24 The reactions of biogenic volatile organic compounds (BVOC) with the nitrate radical 25 (NO₃) are major night-time sources of organic nitrates and secondary organic aerosol (SOA) 26 in regions influenced by BVOC and anthropogenic emissions. In this study, the formation 27 of gas-phase highly oxygenated organic molecules-organic nitrates (HOM-ON) from NO₃-28 initiated oxidation of a representative monoterpene, β-pinene, was investigated in the 29 SAPHIR chamber (Simulation of Atmosphere PHotochemistry In a large Reaction 30 chamber). Six monomer (C = 7-10, N = 1-2, O = 6-16) and five accretion product (C = 17-10). 31 20, N = 2-4, O = 9-22) families were identified and further classified into first- or second-32 generation products based on their temporal behavior. The time lag observed in the peak 33 concentrations between peroxy radicals containing odd and even number of oxygen atoms, 34 as well as between radicals and their corresponding termination products, provided 35 constraints on the HOM-ON formation mechanism. The HOM-ON formation can be 36 explained by unimolecular or bimolecular reactions of peroxy radicals. A dominant portion 37 of carbonylnitrates in HOM-ON was detected, highlighting the significance of 38 unimolecular termination reactions by intramolecular H-shift for the formation of HOM-39 ON. A mean molar yield of HOM-ON was estimated to be 4.8% (-2.6%/+5.6%), suggesting significant HOM-ON contributions to the SOA formation. 40
- Keywords: NO₃ radical, biogenic volatile organic compounds, organic nitrate, secondary 42 organic aerosol, anthropogenic-biogenic interaction, night-time oxidation

- **Synopsis:** The reactions of nighttime anthropogenic oxidants with biogenic organics form
- 44 low-volatile vapors, potentially contributing a large fraction of particulate organic matter.

Introduction

46

47 Biogenic volatile organic compounds (BVOC), such as isoprene (C₅H₈) and monoterpenes (C₁₀H₁₆) emitted from terrestrial vegetation, constitute a large fraction of global gas-phase 48 49 organic compounds. In the ambient conditions, BVOC are primarily oxidized by OH in the daytime.^{2, 3} NO₃ radicals at night-time.^{4, 5} and O₃ during both day- and night-time.^{6, 7} 50 51 These reactions are believed to be the dominant contributor to the formation of secondary 52 organic aerosols (SOA), influencing regional and global climate, air quality, and human health.^{8, 9} Compared to SOA formation from OH- and O₃-initiated oxidation of BVOC, 53 54 night-time NO₃ oxidation of BVOC has been less investigated, but these reactions are 55 highly relevant in ambient conditions, particularly in regions influenced by anthropogenic NO_x (NO + NO₂) and natural BVOC emissions. ¹⁰⁻¹² Reactions of BVOC + NO₃ can form 56 57 organic nitrates (ON), which serve as a temporary or permanent sink for NO_x and affects regional O₃ budgets and nitrogen cycles. ^{13, 14} Due to their semi-/low-volatility, ON can also 58 59 partition into the condensed phase participating in SOA formation. The results from the Southern Oxidant and Aerosol Study (SOAS) have shown that a large fraction of night-60 61 time SOA formation can be explained by reactions of BVOC + NO₃, about half of which is from monoterpenes + NO₃. Therefore, this anthropogenic-biogenic interactions 62 between NO₃ and BVOC, especially monoterpenes, is critical to understand night-time 63 64 SOA formation.

Among the monoterpenes, \(\beta \)-pinene has high emission rates (being the second most abundant monoterpene, after α-pinene), 16 high reactivity with NO₃ (with a second-order rate constant of 2.5×10⁻¹² cm³ molecule⁻¹ s⁻¹ at 298 K), ¹⁷ and high SOA yields with NO₃ (with SOA mass yields of 27-104% $^{18-23}$ compared to 0-16% for α -pinene $^{22-25}$). The reaction of β-pinene with NO₃ contributes a significant fraction of the SOA produced by monoterpene + NO₃ and was therefore often selected as a representative monoterpene in recent laboratory studies. ^{15, 19-21, 26} Previous studies have investigated β-pinene + NO₃. mostly focusing on the determination of the SOA yield, chemical characterization of particle-phase products, and possible formation mechanism of products containing a low number of oxygen atoms. For example, Fry et al. 19 measured the SOA yield. Boyd et al. 20 additionally found that neither humidity nor peroxy radical fate affects SOA yields, determined ON fraction in the aerosols, and proposed a formation mechanism of the detected gas-phase ON (C₁₀H₁₅NO_{5,6} and C₁₀H₁₇NO_{4,5}), which are formed by the bimolecular reactions of RO2. Claflin and Ziemann²¹ observed monomers (C₁₀ ON), dimers (C₂₀ ON), and trimers (C₃₀ ON) in the particle-phase products from reactions of βpinene + NO₃ and highlighted oligomerization reactions in the particle-phase mechanism. Despite previous efforts by a number of laboratory studies, the understanding of the chemistry of β -pinene with NO₃, especially regarding gas-phase reaction products containing a high number of oxygen atoms, is still incomplete. In particular, highly oxygenated organic molecules-organic nitrates (HOM-ON), a new class of gas-phase

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

compounds containing at least 6 oxygen atoms, ²⁷ have been recently observed and found to play a potentially significant role in SOA formation in the NO₃ oxidation of BVOCs, including β-pinene. ^{28, 29} Nah et al. ³⁰ observed a series of HOM-ON of C₇₋₁₀ with 4-9 oxygen atoms in both particle- and gas-phase products of NO₃ oxidation of β-pinene. Takeuchi and Ng³¹ additionally observed a substantial contribution of accretion products such as C₂₀H₃₂N₂O₈₋₁₁ in the particle phase. These HOM-ON are known to be formed in a short time-scale via autoxidation, 30 which involves successive intramolecular H-shifts in peroxy radicals (RO2•) and subsequent O2-addition, 6, 32 resulting in an oxygenated RO2• radical reaction chain, shown in Scheme S1a. Recent studies have summarized general RO2. reactions, 27, 33 with the most critical ones shown in Scheme S1b-j. Via bimolecular reactions with RO2•, HO2•, or NO3, the RO2• autoxidation chain will either be terminated to form a set of closed-shell products (Scheme S1b-d, g-j), including hydroxyperoxide, alcohol, carbonyl, and accretion products, or be continued via the formation of alkoxy radicals (RO•, Scheme S1e-f). Unimolecular termination pathways generally lead to the formation of carbonyls (Scheme S1h-i) or epoxides (Scheme S1j).³² However, the specific HOM-ON formation mechanism remains elusive for the β-pinene + NO₃ system. In addition, the knowledge of the chemical composition of HOM-ON is incomplete and their contribution to SOA formation is unquantified. In this study, experiments of NO₃-initiated oxidation of β-pinene were performed in

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

a large Reaction chamber). A large number of HOM-ON were identified and quantified. An example formation pathway was proposed and further constrained based on the time series. An estimate of production yields of these HOM-ON formed from the β -pinene + NO₃ reaction was provided to evaluate their role in the SOA formation.

Experimental and Methods

Experimental Setup. The experiments were performed in the SAPHIR chamber at Forschungszentrum Jülich, Germany. It is a double-walled Teflon chamber with a volume of 270 m³. A detailed description of SAPHIR can be found elsewhere.^{34, 35} Before the experiment, the chamber was purged with synthetic air at ~330 m³ h⁻¹ for about 4 h to clean the chamber and eliminate any interference from previous experiments. During the whole experimental period, the chamber was kept under an over-pressure of 35 Pa, leading to a dilution rate of 1.5×10⁻⁵ s⁻¹. The shutter system was closed to prevent photochemical reactions, including NO₃ photodissociation. A fan was continuously operated to mix the trace gases with homogenization within 2 min.

Experiments were designed to probe the time series of gas-phase HOM-ON formed from β -pinene + NO₃, with the detailed experimental procedure shown in Figure S1. First, ozone was added into the chamber, followed by NO₂ to form in-situ NO₃ radicals along with the simultaneous formation of dinitrogen pentoxide (N₂O₅) as per the reactions below

123
$$NO_2 + O_3 \rightarrow NO_3 + O_2$$
 (R1)

124
$$NO_3 + NO_2 \leftrightarrow N_2O_5$$
 (R2)

Through the equilibrium with N₂O₅, sufficiently high concentrations of NO₃ radicals were ensured. A concentration ratio (~2:1) of NO₂ and O₃ was selected to ensure that more than 98% of β-pinene reacted with NO₃ radicals instead of O₃ during each experimental period, as shown in Figure S2. About 16 min after NO₂ addition, concentrations of NO₃ and N₂O₅ reached 90 ppt and 1.5 ppb, respectively, and β-pinene was added into the chamber, initiating the oxidation reaction. Another two \beta-pinene additions were deployed at respectively 50 min and 100 min after the first β-pinene addition. Later on, 12 ppb O₃ and 16 ppb NO₂ were introduced into the chamber, followed by one more addition of β-pinene. Four experimental periods were performed to probe the time series of products and distinguish first- and second-generation products. With no seed particles used in these experiments and low concentrations of β-pinene and NO₃, a negligible amount of particles were formed and observed, as shown in Figure S3. This is in contrast to previous studies, ¹⁹-^{22, 26, 36} which used seed aerosol and/or high concentrations of β-pinene and NO₃, leading to particle formation. Due to the low particle number and surface area concentrations in our work, particles are expected to have negligible effects on the gas-phase products' partitioning. Experiments were performed under dry conditions (relative humidity <3%) and at an average temperature of 300.0 ± 2.0 K. **Instrumentation.** The chamber was equipped with a comprehensive set of instruments as described by Zhao et al.³⁷ In this experiment, a home-built diode laser-based, cavity ringdown spectrometer was used to measure in-situ concentrations of NO₃ and N₂O₅.³⁸ A

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS, Ionicon Analytik, Austria) was used to measure the concentrations of VOC, including β -pinene and acetone. From the measured concentrations, the β -pinene consumption during the experiments can be derived and agrees with the expectations when considering the dilution (a loss rate coefficient of $1.5\times10^{-5}~\text{s}^{-1}$) and the reaction with NO₃ (a reaction rate constant of 2.5×10^{-12} cm³ molecule⁻¹ s⁻¹).³⁹

The chemical composition of produced HOM-ON was characterized online using a

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

¹⁵NO₃ chemical ionization mass spectrometer (CI-API-TOF-MS, Aerodyne Research Inc.), which detects products with six or more oxygen atoms efficiently. 40 Nitrogen-15 was used to distinguish the nitrogen-14 atoms in the chamber-produced ON, most of which are expected to complex with the ¹⁵NO₃- ion. ⁴¹ The mass spectral data within the m/z 4-1400 range were analyzed using a Tofware analysis toolkit (Tofwerk/Aerodyne) in Igor Pro (WaveMetrics, Inc.). High-resolution analysis was applied to identify ions with a resolving power $m/z/\Delta m/z$ of ~3500. Isotopes were constrained during the peak assignment process. The mass spectrum of the first experimental period was selected to assign peaks, as it showed a mass spectrum similar to other experimental periods and the end of the experiments and contained the same products as other periods (Figure S4). We observed a few peaks such as m/z 289 and 334 corresponding to C₅H₁₀N₂O₈·15NO₃- and C₅H₉N₃O₁₀·15NO₃-,10 which are products of isoprene + NO₃ reactions.42 Their time series are shown in Figure S5. These peaks were observed before the beginning of β-pinene +

period, and no obvious and regular response to each β-pinene addition was observed. This indicates that these compounds are residuals on the chamber wall from prior experiments of isoprene + NO₃ one day before and with also possible small contributions from the reaction of β-pinene + NO₃. 43 Moreover, these compounds do not contain double bonds according to their formula, ⁴⁴ we expect that they do not react with NO₃ or O₃ during the βpinene experiment, which is confirmed by the lack of response to O₃ and NO₂ addition before the experiment. Additionally, the HOM-ON formed in the reaction of β-pinene with NO₃ were absent before the first β-pinene addition. Therefore, we conclude that residual compounds do not have significant influence on the β-pinene + NO₃ reactions. We would like to note that our CIMS easily detects these HOM evaporated from the residue on the chamber wall despite their low concentrations because of its high sensitivity to HOM. The concentrations of O₃ and NO_x were measured using an O₃ analyzer (ANSYCO, model O341M) and a NO_x analyzer (ECO PHYSICS TR480), respectively. The SOA was monitored using an SMPS (TSI DMA3081/TSI CPC3785). Measurements of physical parameters, including the temperature, relative humidity, and flow rate, were also conducted in these experiments. Yield of products. The peak area of ions identified using the mass spectrometer was normalized to the total ion signal and then converted to concentrations using a calibration coefficient (C) of 2.5×10¹⁰ molecule cm⁻³ nc⁻¹ (normalized count), determined using H₂SO₄

NO₃ experiments, their concentrations increased slowly during the whole experimental

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

as described by Pullinen et al.⁴⁵ A mass-independent transmission efficiency equal to H₂SO₄ (with an uncertainty of -0%/+14%) was used when applying the calibration coefficient to HOM, as determined in our previous study.⁴⁵ The determination of this calibration value and its application to HOM are described in details in the Supporting Information (SI) (section S1). The concentrations of the identified ON with more than 6 O atoms were summed to the total concentrations of HOM-ON after a wall loss rate of 6×10⁻ ⁴ s⁻¹, and a dilution rate of 1.5×10⁻⁵ s⁻¹ were accounted for. ⁴⁶ Previous studies have shown that the wall loss rate of some compounds changes as the experiment continues, ⁴⁷ which could affect the determined HOM yield. As the HOM yield in this study was determined over a short period after each injection (~10 min), we do not expect a large change in the wall loss rate during this period. In addition, considering the low volatility of HOM leading to their irreversible loss to the wall, a narrow distribution of the wall loss rates is expected. Sensitivity analysis shows that the HOM yield in this study is not sensitive to the wall loss rate, with a respective change of 23% and -11% in HOM yield from an increase of +100% or -50% in the wall loss rate. One uniform wall loss rate is thus used to determine HOM in this study. Such simplification may introduce additional uncertainty in HOM yield calculation. The molar yield of these HOM-ON was calculated following eq 1, where concentrations of produced HOM-ON is divided by the concentrations of β-pinene that reacted with NO₃.

204
$$Y = \frac{[HOM ON]}{[\beta \text{ pinene}]_{reacted}}$$
 (1)

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

Herein, [HOM-ON] represents the product concentration formed 10 min after each β -pinene addition. In other words, the molar yield Y refers to the primary yield, which mostly involves first-generation products and contains negligible multigeneration products. The uncertainty on the molar yield was estimated to be -55%/+117% from the combined uncertainties of HOM-ON peak intensity (~10%), β -pinene concentration (~15%), calibration factor (-52%/+101%), and transmission efficiency (-0%/+14%) using error propagation. The HOM-ON molar yield was averaged over four experiment periods, and uncertainties were estimated based on this value. Molar yields were later converted into mass yields using the molecular mass of each compound following Ehn et al.⁶

Results and Discussion

Overview of HOM-ON. Two distinct regions at m/z 280-460 (red) and m/z 510-690 (blue) in the mass spectrum of the first β -pinene + NO₃ experimental period (between the first and second β -pinene addition) were observed and segregated into monomers (C = 7-10, N = 1-2) and accretion products (C = 17-20, N = 2-4) (Figure 1a). Based on the above peak assignment methods, 153 compounds were identified, including 99 monomers, 46 accretion products, and 8 other compounds. Their detailed formula can be found in Table S1. Most of the identified products contained at least one N atom and more than six O atoms. This oxygenated feature agrees with the definition of HOM,²⁷ and these compounds can thus be classified as HOM-ON.

The Kendrick mass defect (O-based) plot of these identified HOM-ON is shown in Figure 1b, indicating their relative abundance and O/C ratio. Overall, the majority of the identified HOM-ON are monomers, with a fraction of 65.7%, with the rest being composed of accretion products (31.2%) and other compounds (3.1%). An average O/C ratio of 1.23 and 0.81 is observed for monomers and accretion products, respectively. Previous β-pinene + NO₃ studies generally detected O/C < 1 for monomers^{20, 21, 30} and 0.45-0.55 for accretion products.^{21, 31} This O/C difference can be attributed to the use of NO₃⁻ as a reagent ion. Specifically, NO₃- CIMS preferentially detects compounds containing high numbers of O atoms and multiple hydrogen bond donors, 40, 48 compared with other reagent ions such as I^{-.49} The HOM-ON on each horizontal line in Figure 1b share the same number of C, N, and H-atoms, with an increasing number of O atoms from left to right, allowing further grouping into product families based on the chemical formula. We distinguished six groups of monomer families (C₁₀H₁₅₋₁₇NO₆₋₁₅, C₇H₉₋₁₁NO₈₋₁₂, C₉H₁₃₋₁₅NO₈₋₁₄, C₈H₁₁₋₁₃NO₈₋₁₂, C₁₀H₁₄₋₁₆N₂O₈₋₁₆, and C₉H₁₀₋₁₂N₂O₉₋₁₂) and five accretion product families (C₂₀H₃₂N₂O₉₋₁₉, $C_{17}H_{26}N_2O_{12-18}$, $C_{19}H_{30}N_2O_{11-19}$, $C_{20}H_{31}N_3O_{12-21}$, and $C_{20}H_{30}N_4O_{14-22}$). These product families can be further assigned as the first- or second-generation based on their time series.

224

225

226

227

228

229

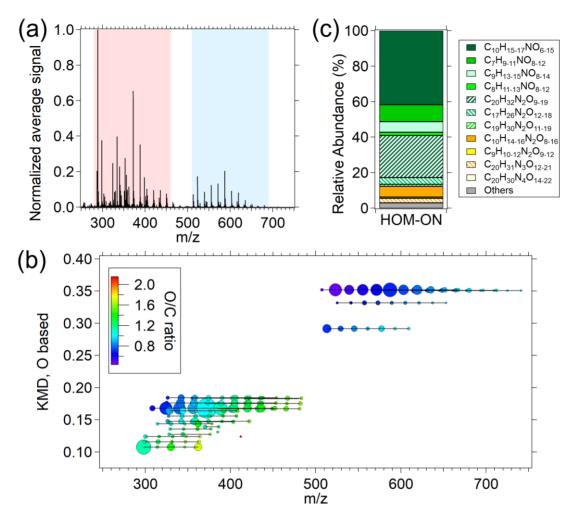
230

231

232

233

234


235

236

237

238

239

Figure 1. (a) Representative average mass spectrum of HOM-ON formed in this study, shown here for the first experimental period between the first and second β-pinene addition. (b) Kendrick mass defect (O-based) of identified products, with the area representing relative abundance and the color denoting the O/C value. (c) Stacked bar chart of identified product families, with first-generation products in green shades, second-generation products in yellow shades, and the remainder in gray.

Generally, first-generation products constituted a major fraction of total products (see figure 1c), with a value of 87.6%, including monomers of C₁₀H₁₅₋₁₇NO₆₋₁₅ (41.6%), C₇H₉₋₁₁NO₈₋₁₂ (9.6%), C₉H₁₃₋₁₅NO₈₋₁₄ (6.0%), and C₈H₁₁₋₁₃NO₈₋₁₂ (1.8%) and accretion products of C₂₀H₃₂N₂O₉₋₁₉ (23.7%), C₁₇H₂₆N₂O₁₂₋₁₈ (3.8%), and C₁₉H₃₀N₂O₁₁₋₁₉ (1.1%). Second-generation products, including monomers of C₁₀H₁₄₋₁₆N₂O₈₋₁₆ (6.0%) and C₉H₁₀₋₁₂N₂O₉₋₁₂

(0.74%) and accretion products of C₂₀H₃₁N₃O₁₂₋₂₁ (2.5%) and C₂₀H₃₀N₄O₁₄₋₂₂ (0.080%) were observed. Finally, the remaining 3.1% of the identified products could not be attributed to any of the above product families or could their structure be elucidated by a suitable mechanism pathway, but they are clearly products from β-pinene + NO₃ reactions based on their time series; here, they are simply grouped as "others". All of the aboveidentified compounds are organic nitrates, and their formation mechanism will be discussed below. We would like to note that low peaks constituting less than 0.1% of the largest product peak C₁₀H₁₅NO₁₀ were not assigned. First-Generation HOM-ON and Their Formation Mechanism. A number of monomer and accretion product families were observed with a typical first-generation time series. They were quickly formed after each β-pinene addition and reached a peak concentration about 7 min later. This rapid reaction rate indicates an autoxidation formation pathway, which has a short time-scale of tens of seconds per oxidation step or less.³² The detailed chemical composition and possible formation mechanism of these first-generation products, including C10 HOM-ON, C7-9 HOM-ON, and accretion products, are discussed in the following sections. First-generation C10 HOM-ON. Among the first-generation product families, C₁₀H₁₅₋₁₇NO₆₋₁₅ was the most abundant. Considering how the RO₂• radical chain is terminated to form closed-shell products (see the SI),³³ they are likely to be formed via

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

by the addition of NO₃ radical to the C=C double bond resulting in a nitrooxyalkyl radical C₁₀H₁₆NO₃• (NO₃-R•), as shown in Scheme S2. In the atmosphere, this NO₃-R• will be quickly converted to a nitrooxyperoxy radical C₁₀H₁₆NO₅• (NO₃-RO₂•) by reaction with O₂. Via autoxidation, C₁₀H₁₆NO₅• radicals rapidly undergo unimolecular H-shift and O₂ addition, resulting in a progressive series of C₁₀H₁₆NO_{2n+1}• radicals. Meanwhile, RO₂• such as the C₁₀H₁₆NO₅• radical can be involved in bimolecular reactions, including reaction with RO2•, NO3, HO2•, NO2, and NO.50 Their reaction loss rates (Figure S6) were quantified using a zero-dimensional (0D)-model based on the Master Chemical Mechanism (MCM) v3.3.1, 39, 51 with detailed calculations in Section S2. The loss rates of RO2• + RO2• and RO₂• + NO₃ reactions are much higher than the reaction RO₂• with HO₂•, NO₂, and NO, especially within the short period after each β-pinene addition. Overall, bimolecular reactions within this study were then dominated by RO2• + RO2• and RO2• + NO3 reactions, where both reactions form nitrooxyalkoxy radicals (NO₃-RO•), while the RO₂• self- and cross-reactions also lead to radical chain termination (Russel mechanism, see Scheme S1b,c). For the formation of C₁₀H₁₆NO_{2n}•, an "alkoxy-peroxy" pathway provides a plausible mechanism. ^{33,45} For example, the nitrooxyalkoxy radical C₁₀H₁₆NO₄• can be competitively formed from the initially formed NO₃-RO₂• (C₁₀H₁₆NO₅•) and then undergo H-migration and O₂ addition forming C₁₀H₁₆NO₆•.^{52, 53} This peroxy radical can then again undergo

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

alkoxy-peroxy pathway, and yields the progressive series of C₁₀H₁₆NO_{2n}• products (with an even number of O atoms). In this study, both C₁₀H₁₆NO_{2n+1}• and C₁₀H₁₆NO_{2n•} radicals were observed, with time series of the most abundant radicals C₁₀H₁₆NO₉• and C₁₀H₁₆NO₈• shown in Figure 2a. Both C₁₀H₁₆NO₉• and C₁₀H₁₆NO₈• concentrations followed a typical time series as expected for a first-generation radical, quickly formed after each β -pinene addition, reaching a peak about 2-3 min later, and followed by a subsequently sharp decay. Interestingly, the peak concentration of the C₁₀H₁₆NO₉• showed about 30-60 s earlier than that of C₁₀H₁₆NO₈•. This time lag is also observed between other C₁₀H₁₆NO_{2n+1}• and C₁₀H₁₆NO_{2n}•, as shown in Figure S7. As the individual wall loss rate for each compound was not determined, we are unable to compare their formation rates precisely. However, considering that the major sink of RO2• is via chemical reactions leading to closed-shell products rather than wall loss, this time lag can be explained by the formation mechanism of C₁₀H₁₆NO_{2n}•, which is expected to involve a longer-lived RO₂• intermediate that must undergo a bimolecular step forming NO₃-RO• in either NO₃-RO₂• + RO₂• or NO₃-RO₂• + NO₃ reactions, as opposed to directly produced C₁₀H₁₆NO_{2n+1}•. To our knowledge, no previous studies have reported such temporal lag between the formation process of radicals containing odd and even oxygen atoms.

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

According to previous studies, the final fate of these radicals in general is radical chain termination by RO₂• which is expected to produce an equal amount of carbonylnitrates and hydroxynitrates via the Russell mechanism, termination by HO₂• resulting in

hydroperoxynitrates,³³ or termination by unimolecular decomposition forming small radical fragments such as OH or NO₂ (see the SI). The time series of a typical NO₃-RO₂• (C₁₀H₁₆NO₉•) along with the corresponding termination products (carbonylnitrates of C₁₀H₁₅NO₈, hydroxynitrates of C₁₀H₁₇NO₈, and hydroperoxynitrates of C₁₀H₁₇NO₉) are shown in Figure 2b. Note that hydroxynitrate formed from C₁₀H₁₆NO_x• and hydroperoxynitrate formed from C₁₀H₁₆NO_{x-1}• share the same product formula and cannot be distinguished based on the mass spectra. Thus, C₁₀H₁₇NO₈ and C₁₀H₁₇NO₉ here are mixtures containing both hydroxynitrates and hydroperoxynitrates, whereas these corresponding termination products demonstrated a typical time series of first-generation products, with a quick peak appearance after each β -pinene addition and subsequent decay. Notably, the carbonylnitrates C₁₀H₁₅NO₈ showed a much higher signal than the other two termination products. The dominance of carbonylnitrates was commonly observed within the C₁₀H₁₅₋₁₇NO₆₋₁₅ family and will be discussed in detail below. Additionally, the termination products, especially for carbonylnitrates of C₁₀H₁₅NO₈, peaked about 3-6 min later than C₁₀H₁₆NO₉•. This time window is suggested to be due to the termination process in the autoxidation chain. To our knowledge, this is the first time such temporal formation lag between radicals and the corresponding termination products is demonstrated.

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

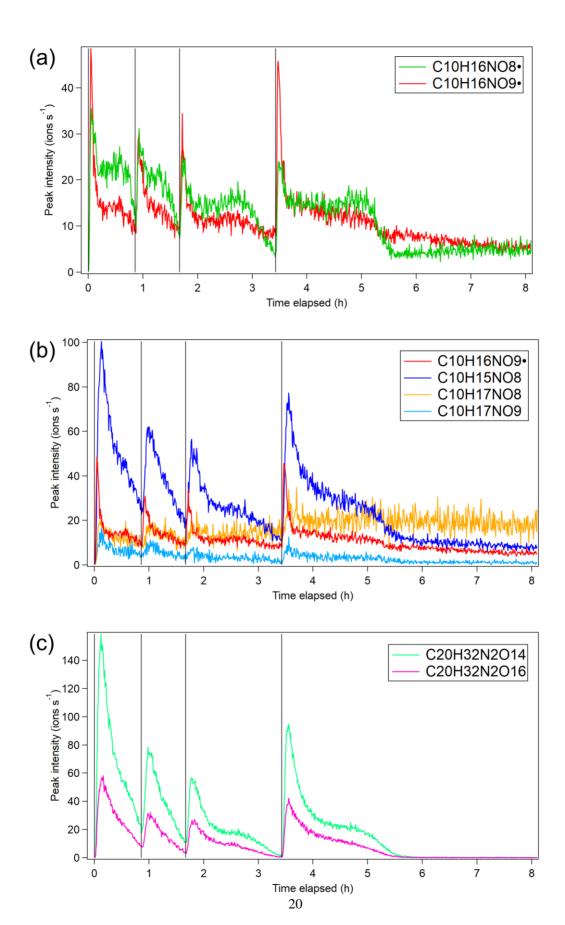


Figure 2. Time series of (a) C₁₀H₁₆NO₈• (green) and C₁₀H₁₆NO₉• (red) peroxy radicals, (b) 331 C₁₀H₁₆NO₉• peroxy radical (red) and its corresponding termination products, including 332 carbonylnitrates of C₁₀H₁₅NO₈ in dark blue, hydroxynitrates of C₁₀H₁₇NO₈ in yellow, and 333 hydroperoxynitrates of C₁₀H₁₇NO₉ in light blue, and (c) accretion products of C₂₀H₃₂N₂O₁₄ (lime) 334 and C₂₀H₃₂N₂O₁₆ (rose). The four vertical markers indicate β-pinene additions into the chamber. 335 All signals were averaged over binned 30 s intervals. 336 For C₁₀H₁₆NO₆₋₁₅• peroxy radicals (corresponding to the C₁₀H₁₅₋₁₇NO₆₋₁₅ family), 337 similar relative abundances were observed independent of odd or even numbers of O atoms 338 (Table 1). This illustrates the importance of the alkoxy-peroxy pathway in this product 339 family. For termination products, it should be noted that every C₁₀H₁₇NO_x signal, as 340 discussed above, comprises contributions of both hydroxynitrates and hydroperoxynitrates. 341 Nevertheless, it is obvious that carbonylnitrates showed much higher abundances than hydroxynitrates, apparently different from the 1:1 equivalence of carbonyl/hydroxy 342 343 products in the Russell mechanism, which was an important bimolecular termination 344 channel in this study. Several mechanisms have been described in the literature that can 345 explain this higher abundance of carbonyls. Given that these HOM-RO2• formed via 346 autoxidation contain multiple -OOH groups, the likely mechanism is the H-migration of an α-OOH hydrogen atom, forming an OH and a carbonyl (see Reaction S1h) and no 347 alcohol. 32, 33, 54-56 Such a H-shift termination pathway was likewise used to explain the 348 349 formation of the highest intensity peak of carbonylnitrate $C_{10}H_{15}NO_7$ from Δ -3-carene + NO₃.⁴¹ Alternative possible pathways leading to higher abundance of carbonyls include: 350 (1) the reaction of alkoxy RO• + O₂ forming carbonyls and HO₂•,⁵⁷ (2) decomposition of 351 β-nitrooxyperoxynitrate,⁵⁸ (3) self-reactions of RO₂• via the Bennett and Summers 352

mechanism, and (4) possible unequal yield of carbonyl and hydroxyl corresponding to a given RO₂• in the cross reactions, and some other pathways. However, kinetic studies have found relatively lower rate constants $(4.7 \times 10^4 \text{ s}^{-1})$ for the reaction of RO• with O₂ than that of other RO• reactions, including decomposition (1.5×10² s⁻¹ - 1.3×10⁸ s⁻¹) and isomerization (2.5×10⁵ s⁻¹ - 3.4×10⁷ s⁻¹).^{53, 59-61} The decomposition of β nitrooxyperoxynitrate formed in RO2• + NO2 reactions is fast in the particle phase but preferentially redissociates back to NO₃-RO₂• in the gas-phase.⁶² The Bennett and Summers mechanism of RO₂• + RO₂• → 2R_HC=O + H₂O₂ was mostly reported in heterogeneous oxidation reactions and was not previously included in the gas-phase reactions. 63, 64 For cross-reactions between a small and big RO2•, statistically an equal amount of hydroxyl and carbonyl products are expected for a large number of different RO2•, despite potential preferences in a single case, unless an RO2• is a tertiary or acyl RO₂•. An equal amount of hydroxyl and carbonyl is also recommended in current MCM⁶⁵, ⁶⁶ and the review of Jenkin et al.⁵⁰ Furthermore, overall bimolecular loss rates of RO₂• are less than 1.5×10⁻² s⁻¹, as shown in Figure S6. If we assume a unimolecular termination reaction rate of >0.1 s⁻¹ for the HOM-RO₂• as reported both experimental measurements³², ^{54, 67, 68} and theoretical studies^{56, 69, 70} for RO₂• with an α-OOH hydrogen, the unimolecular termination pathway outweighs bimolecular reactions. Although the exact chemical structures of the RO₂• in this study are different from those in the literature, ^{32, 54, 68} they likely contain α-OOH hydrogen atoms and can be assumed to have similar unimolecular

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

reaction rates. Therefore, instead of the above discussed alternative four pathways, unimolecular termination pathways are likely to be the major contributor to the high gasphase yields of carbonylnitrates observed.

Table 1. Family of $C_{10}H_{15-17}NO_{6-15}$ Observed, Including Nitrooxyperoxy Radicals, along with Their Termination Products, Carbonylnitrates, Hydroxynitrates, and Hydroperoxynitrates.^a

nitrooxyperoxy radical	carbonylnitrate	hydroxynitrate	hydroperoxynitrate
m	m-17	m-15	m+1
$C_{10}H_{16}NO_{7}$	$C_{10}H_{15}NO_6$		$C_{10}H_{17}NO_7$
1.9%	4.8%		1.1%
$C_{10}H_{16}NO_{8}$	$C_{10}H_{15}NO_7$	$C_{10}H_{17}NO_7$	$C_{10}H_{17}NO_8$
14.2%	34.6%	1.1%	7.8%
$C_{10}H_{16}NO_{9}$	$C_{10}H_{15}NO_8 \\$	$C_{10}H_{17}NO_8\\$	$C_{10}H_{17}NO_9$
10.0%	32.7%	7.8%	4.4%
$C_{10}H_{16}NO_{10}$	$C_{10}H_{15}NO_9$	$C_{10}H_{17}NO_9$	$C_{10}H_{17}NO_{10}$
2.5%	26.6%	4.4%	3.0%
$C_{10}H_{16}NO_{11}$	$C_{10}H_{15}NO_{10}$	$C_{10}H_{17}NO_{10}$	$C_{10}H_{17}NO_{11}$
4.2%	100%	3.0%	2.1%
$C_{10}H_{16}NO_{12}$	$C_{10}H_{15}NO_{11}$	$C_{10}H_{17}NO_{11}$	$C_{10}H_{17}NO_{12}$
8.7%	42.0%	2.1%	3.5%
C ₁₀ H ₁₆ NO ₁₃ •	C ₁₀ H ₁₅ NO ₁₂	C ₁₀ H ₁₇ NO ₁₂	C ₁₀ H ₁₇ NO ₁₃
5.2%	14.3%	3.5%	1.9%
$C_{10}H_{16}NO_{14}$	C ₁₀ H ₁₅ NO ₁₃	$C_{10}H_{17}NO_{13}$	$C_{10}H_{17}NO_{14}$
1.1%	11.7%	1.9%	0.6%
C ₁₀ H ₁₆ NO ₁₅ •	C ₁₀ H ₁₅ NO ₁₄	C ₁₀ H ₁₇ NO ₁₄	C ₁₀ H ₁₇ NO ₁₅
0.80%	13.2%	0.6%	0.19%
	C ₁₀ H ₁₅ NO ₁₅	C ₁₀ H ₁₇ NO ₁₅	
	2.8%	0.19%	

^a The relative intensities for the species detected in this study during the first reaction period are shown on the second line in the same cell. Their relative intensities were normalized to the largest product signal of $C_{10}H_{15}NO_{10}$.

Scheme 1 shows a plausible subset of the degradation scheme, based on structureactivity relationships (SARs) and recent experimental data, 20, 71 and starting at the tertiary NO₃-R• C₁₀H₁₆NO₃• (R1) preferentially formed upon initial NO₃ addition to β-pinene. Similar to the OH-initiated oxidation, 72, 73 breaking of the four-membered ring has been reported as a favorable pathway, forming R2, 20, 21 which after O2 addition forms an unsaturated tertiary C₁₀H₁₆NO₅• (R3) radical. A structure similar to R3 was reported in the β-pinene + OH system and was suggested to undergo quick unimolecular reactions. ^{72, 74-76} Moreover, recent studies have shown that a C=C double bond in an RO2• radical is a key functionality, leading to fast unimolecular reactions.^{56,77} Thus, we suggest that R3 opens a gateway to fast unimolecular reactions, including autoxidation. The expected rate coefficient of the following unimolecular H-shift has been derived using the SAR by Vereecken and Nozière.⁵⁶ Nitrooxyperoxy radical R5 can undergo a rapid scrambling reaction to produce R6, which can either undergo a 1,5 H-shift to form R7, or be terminated via 1,6 H-shift to form carbonylnitrate C₁₀H₁₅NO₆ (P1) + OH. Similar unimolecular Hshift termination reactions are suggested for R8, R10, and R12, producing carbonylnitrates. All of these C₁₀H₁₆NO_{2n+1}• radicals (R5, R8, R10, R12) could also undergo bimolecular reactions with RO₂•/NO₃ to form C₁₀H₁₆NO_{2n}•. Taking R5 as an example, the resulting R13 followed by an H-shift leads to the formation of R14. Both the -OH group and the C=C double bond within R14 further favor fast unimolecular reactions, ⁵⁶ leading to more oxidized C₁₀H₁₆NO_{2n}• radicals via autoxidation or to the formation of P1. Note that Scheme

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

1 is just one of many possible unimolecular reaction chains, and some radicals observed in this study are not included in Scheme 1, such as the formation of C₁₀H₁₆NO₁₅•. Further rigorous studies are needed to constrain its unimolecular pathway. Additionally, the C=C double bond in some of these products can be attacked by the NO₃ radical and lead to second-generation products, which was also observed in this study and will be discussed below. Note that this is not the only pathway leading to HOM. Nah et al.³⁰ proposed a ringretaining pathway, with a simplified mechanism shown in Scheme S3a. However, this pathway cannot explain the formation of the second-generation products (e.g., C₁₀H₁₄-16N₂O₈₋₁₆) and C7 compounds in this study. Moreover, according to previous studies, ^{74, 77} the ring-opening pathway is more likely to lead to autoxidation and to HOM in many monoterpene oxidation reactions, such as α -pinene + NO₃⁷⁸ and β -pinene + OH^{72-74, 77} due to the steric hindrance for H-shift in the ring-retaining RO₂•. Particularly, for β-pinene, the yield of ring-opening RO₂• is expected to be high, as shown in the work of Vereecken and Peeters⁷² and Kaminski et al.⁷³ for the reaction of β-pinene + OH. Overall, combining our observation and the literature above, HOM formation is more likely to be formed via the ring-opening pathway in β-pinene + NO₃ reactions, although the autoxidation pathway is complex and still not fully clear in this reaction system and multiple pathways might be present simultaneously. Claflin and Ziemann²¹ proposed another ring-opening pathway (Scheme S3b). For the two ring-opening pathways, their relative importance is currently unclear. Compared to Nah et al.30 and Claflin and Ziemann,21 Scheme 1 provides a

404

405

406

407

408

409

410

411

412

413

414

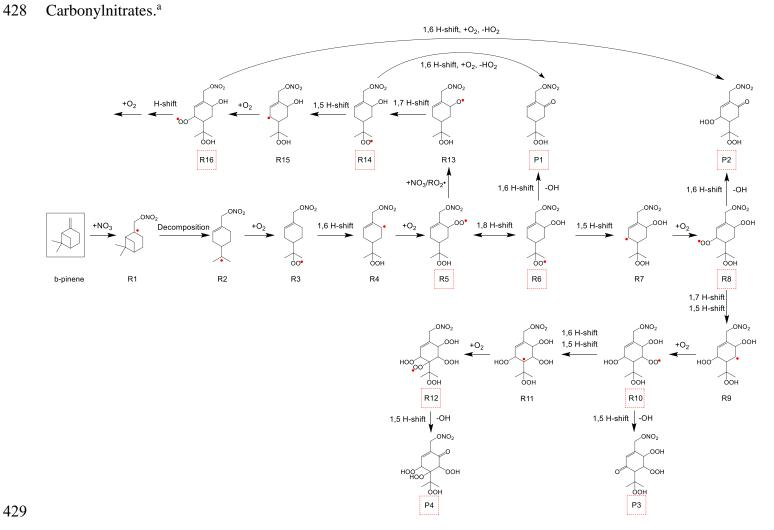
415

416

417

418

419


420

421

422

- formation pathway for RO₂• containing the C=C double bond, which leads to fast HOM-
- ON formation and provides a plausible explanation for the second-generation products
- observed in this study.

Scheme 1. Example Unimolecular Pathway Chain of β-pinene + NO₃ Reactions Leading to the Formation of HOM-ON, specifically Carbonylnitrates.^a

- 430 ^a The formula of radicals and products observed in the experiments were highlighted in red-dashed boxes. This is only a small subset of
- 431 the full oxidation mechanism omitting many competing channels and is not intended to be complete.

First-Generation C7-9 HOM-ON. Besides C10 products, C7-9 compounds were also observed in this study, including product families of C7H9-11NO8-12, C9H13-15NO8-14, and C₈H₁₁₋₁₃NO₈₋₁₂, consistent with the study by Nah et al.³⁰ These first-generation products were suggested to be formed from the decomposition of NO₃-RO• radicals followed by an autoxidation pathway. This decomposition process was already recognized as another important unimolecular reaction, forming ring-opened products. 72, 75, 78, 79 Taking C₇H₉-11NO₈₋₁₂ as an example for R3, besides the fast H-shift as shown in Scheme 1, it can undergo bimolecular reactions with RO2• or NO3 reactions forming a NO3-RO•, which will further decompose into acetone and an unsaturated NO₃-R•, such as C₇H₁₀NO₃•, ^{75, 76} as shown in Scheme S4. Radicals like C₇H₁₀NO₃• can react with O₂, forming C₇H₁₀NO₅•, which can then further undergo autoxidation. Similar to the C₁₀H₁₅₋₁₇NO₆₋₁₅ family, the C₇H₉₋₁₁NO₈₋₁₂ family followed a typical first-generation time series, with a representative radical C₇H₁₀NO₉• and its corresponding termination products shown in Figure S8. When β-pinene was added, C₇H₁₀NO₉• peaked instantaneously, followed by the formation of C₇H₉NO₈, C₇H₁₁NO₈, and C₇H₁₁NO₉. A time window of 3-4 min between the peaks of radicals and termination products was observed, indicating the typical period of the termination processes. Carbonylnitrates were again observed as the dominant termination products, suggesting termination by unimolecular Hshift and OH formation to be a major reaction pathway in the C₇H₉₋₁₁NO₈₋₁₂ family as well. Moreover, higher concentrations, as well as higher carbonylnitrate abundance, were

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

observed in $C_7H_{10}NO_{2n+1}$ • compared to $C_7H_{10}NO_{2n}$ •. This indicates that the alkoxy-peroxy channel is a minor, less competitive pathway in the $C_7H_{9-11}NO_{8-12}$ family. Additionally, a distinct increase of acetone from 0.04 ppb to 0.44 ppb was observed throughout the experiments, as shown in Figure S1. This confirms the presence of fragmentation process in β -pinene + NO_3 , such as the above discussed C_{10} decomposition to form C_7 compounds and acetone. The two remaining product families, $C_9H_{13-15}NO_{8-14}$ and $C_8H_{11-13}NO_{8-12}$, were hypothesized to be formed in a similar pathway, but the exact bond scission position is not yet known.

First-Generation Accretion Products. Three accretion product families were found to follow a typical first-generation product time series, including $C_{20}H_{32}N_2O_{9-19}$, $C_{17}H_{26}N_2O_{12-18}$, and $C_{19}H_{30}N_2O_{11-19}$. Recent studies have identified the importance of rapid reaction of $RO_{2^{\bullet}} + RO_{2^{\bullet}} \rightarrow ROOR + O_{2}$ in the formation of gas-phase accretion products. Figure S10 lists the expected accretion products produced from the above-identified NO₃-RO₂• monomers. These three accretion product families can all be explained via RO₂• self- or cross-reaction channels. Notably, $C_{20}H_{32}N_2O_{9-19}$ were the most abundant accretion products, consistent with the dominance of its corresponding parent NO₃-RO₂•. Figure 2c shows the time series of $C_{20}H_{32}N_2O_{14,16}$, formed from self-reaction of $C_{10}H_{16}NO_{8,9}$ • discussed above. Both of them peaked about 6-8 min after each β-pinene addition and decayed afterward. This is consistent with a quick formation process from RO₂• reactions. Moreover, $C_{20}H_{32}N_2O_{14}$ was the most abundant product among the $C_{20}H_{32}N_2O_{9-19}$ family.

473 Its corresponding precursor C₁₀H₁₆NO₈• also dominated among C₁₀H₁₆NO_x• as shown in Figure S11. However, it should be noted that accretion products with the same formula 474 475 could arise from cross-reactions of several combinations of RO2•; for example, $C_{10}H_{16}NO_{7}$ + $C_{10}H_{16}NO_{9}$ or $C_{10}H_{16}NO_{6}$ + $C_{10}H_{16}NO_{10}$ could both contribute to 476 477 C₂₀H₃₂N₂O₁₄. Currently, we cannot quantify the relative contribution of different RO₂• 478 recombinations to the accretion products, as the reaction rate coefficients of RO2• self- or cross-reactions depend on specific RO2•, and many of them are unknown.81 The two 479 480 remaining product families, C₁₇H₂₆N₂O₁₂₋₁₈ and C₁₉H₃₀N₂O₁₁₋₁₉, showed a similar first-481 generation time series and likewise followed RO₂• self- and cross-reaction channels. 482 Second-Generation HOM-ON and Their Tormation Mechanism. Two monomer 483 families $(C_{10}H_{14-16}N_2O_{8-16}$ and $C_9H_{10-12}N_2O_{9-12})$ and two accretion product families 484 $(C_{20}H_{31}N_3O_{12-21}$ and $C_{20}H_{30}N_4O_{14-22})$, which contain two N atoms (monomers) and three or 485 more N atoms (accretion products), showed a time series differing from first-generation 486 products. They mostly showed a concentration peak after β-pinene addition at a much later 487 phase than typical first-generation products, shown in Figure S9. These compounds were 488 assigned as second-generation reaction products. Among those, C₁₀H₁₄₋₁₆N₂O₈₋₁₆ 489 dominated and were suggested to be formed via NO₃ addition to the first-generation 490 carbonylnitrates products (C₁₀H₁₅NO₆₋₁₅). As discussed above, the carbonylnitrates formed 491 via unimolecular H-shift termination reactions contain one C=C double bond, which can 492 be attacked by NO₃ radicals to form C₁₀H₁₅N₂O_{x•}. For example, P2 in Scheme 1 could form a tertiary dinitrooxyalkyl radical [(NO₃)₂-R•] $C_{10}H_{15}N_{2}O_{11}$ •, which will be quickly converted to a dinitrooxyperoxy radical [(NO₃)₂-RO₂•] $C_{10}H_{15}N_{2}O_{13}$ • via O₂ addition, as shown in Scheme S5. This radical can undergo a unimolecular H-shift to either propagate the radical chain or terminate it by the formation of carbonyldinitrates + OH. Via bimolecular reactions of RO₂• + RO₂•, carbonyldinitrates ($C_{10}H_{14}N_{2}O_{x}$) and hydroxydinitrates ($C_{10}H_{16}N_{2}O_{x}$) can be formed, and hydroperoxydinitrates ($C_{10}H_{16}N_{2}O_{x}$) can be formed via RO₂• + HO₂•. These second-generation HOM-ON have not been reported in previous β -pinene + NO₃ studies because these studies mainly focused on the first-generation products and/or used different analysis methods.^{20, 21, 30} The observation of these dinitrates in this study highlighted the importance of the C=C double bond formed in R2 in Scheme 1.

Accretion products, such as $C_{20}H_{31}N_3O_{12-21}$ and $C_{20}H_{30}N_4O_{14-22}$, were also observed and are generated from self- or cross-reactions of later generation RO_2 •, likely formed via reactions of $C_{10}H_{15}N_2O_x$ • + $C_{10}H_{16}NO_x$ • and $C_{10}H_{15}N_2O_x$ • + $C_{10}H_{15}N_2O_x$ •, respectively. Figure 3a shows the time series of a typical (NO₃)₂-RO₂• $C_{10}H_{15}N_2O_9$ •, compared against that of $C_{20}H_{30}N_4O_{16}$, the accretion products resulting from its self-reaction. Both of them gradually increased after each β -pinene addition. Moreover, when $C_{10}H_{15}N_2O_9$ • reached peak concentration, the signal of $C_{20}H_{30}N_4O_{16}$ showed the largest rate of change. This is consistent with the kinetics shown in eq 2.

512
$$\frac{d[C_{20}H_{30}N_4O_{16}]}{dt} = k_r[C_{10}H_{15}N_2O_9 \bullet]^2 - k_w[C_{20}H_{30}N_4O_{16}]$$
(2)

where k_r and k_w are rate constant of C₁₀H₁₅N₂O₉• self-reaction and the wall loss rate of C₂₀H₃₀N₄O₁₆, respectively. A linear relationship between the rate of accretion products produced and the squared concentrations of RO₂• has also been reported in previous HOM studies. 6, 82 Accretion products of C₂₀H₃₁N₃O_x formed from C₁₀H₁₅N₂O_x• + C₁₀H₁₆NO_x• were also observed in this study, with the representative time series of C₂₀H₃₁N₃O₁₆ and its corresponding precursors RO₂•, C₁₀H₁₅N₂O₉• and C₁₀H₁₆NO₉•, as shown in Figure 3b. The radical C₁₀H₁₅N₂O₉• and its accretion product C₂₀H₃₁N₃O₁₆ likewise followed a time series typical of second-generation products, as well as a similar kinetic dependence. The concentrations of C₂₀H₃₁N₃O₁₆ peaked earlier than its precursor RO₂• corresponding second-generation C₁₀H₁₅N₂O₉• while C₂₀H₃₀N₄O₂₂ showed up later than C₁₀H₁₅N₂O₉•. This can be because another precursor RO₂• of C₂₀H₃₁N₃O₁₆, C₁₀H₁₆NO₉•, is a firstgeneration feature that accelerates the formation of C₂₀H₃₁N₃O₁₆. Additionally, C₂₀H₃₁N₃O₁₆ showed a small peak after β-pinene addition, especially those in third and fourth β-pinene additions. This shows that C₂₀H₃₁N₃O₁₆ followed the trend of its firstgeneration radical C₁₀H₁₆NO₉• more and indicated a role in the cross-reaction formation of C₂₀H₃₁N₃O₁₆. Overall, the above discussion on kinetics further confirms the contribution of RO₂• self- and cross-reactions to the accretion product formation in this study. Finally, we observed a family of C₉ products with second generation behavior. We suggest that the second-generation C₉H₁₀₋₁₂N₂O₉₋₁₂ was likely to be formed by a secondary NO₃ addition pathway, similarly to C₁₀H₁₄₋₁₆N₂O₈₋₁₆. However, the first generation of

513

514

515

516

517

518

519

520

521

522

523

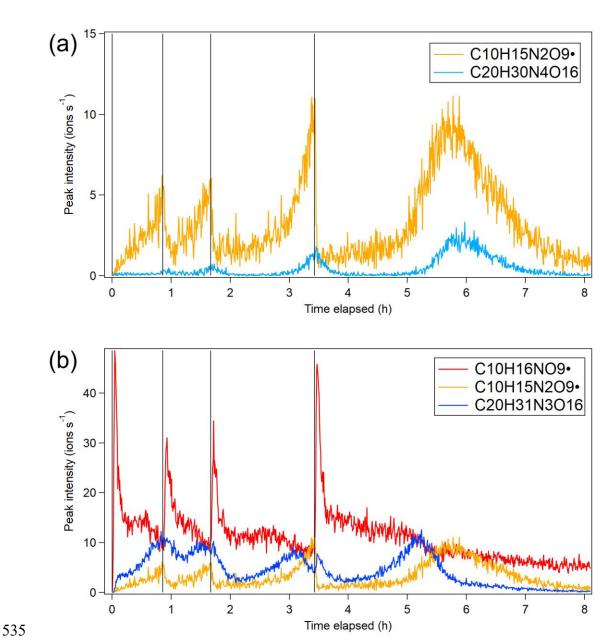
524

525

526

527

528


529

530

531

unsaturated C_9 compounds from β -pinene + NO_3 was not detected with our technique, such

that the detailed formation mechanism of C₉H₁₀₋₁₂N₂O₉₋₁₂ cannot be elucidated at this time.

Figure 3. Time series of (a) a representative second-generation peroxy radical $(C_{10}H_{15}N_2O_{12}^{\bullet},$ orange) and its self-reaction accretion product $(C_{20}H_{30}N_4O_{16},$ cyan), and (b) $C_{20}H_{31}N_3O_{16}$ (navy) resulting from the cross-reaction of $C_{10}H_{15}N_2O_{12}^{\bullet}$ (orange) and $C_{10}H_{16}NO_{9}^{\bullet}$ (red). The four vertical markers indicate β-pinene additions into the chamber. All signals were averaged over binned 30 s intervals for plotting.

Production Yield Determination. The molar yield of HOM-ON (O≥6) in the NO₃ oxidation of β -pinene was estimated to be 4.8% (-2.6%/+5.6%). The large uncertainty in HOM yield is attributed to a number of factors, including the HOM-ON peak intensity, β pinene concentration, calibration factor, and transmission efficiency, as described in the Experimental and Methods section and the SI. Note that the HOM produced during this short reaction time (10 min) consists of 93.4% first-generation products and 4.4% secondgeneration products. This reported value refers to a primary HOM yield. Compared to molar yields of HOM from β-pinene oxidation by O₃ or OH radicals (<0.1%), ^{6,83} the NO₃ radical is exceptionally efficient in oxidizing β-pinene to produce HOM. Moreover, the average value of all currently determined HOM yields is around 5%, including OH, O₃, and Cl systems. ^{27, 84} This means the reaction of β-pinene + NO₃ is competitive enough to produce a sizable fraction of the HOM products. Using the signal-weighted average of the mass of the produced HOM-ON (353.7 g mol⁻¹), we estimate the mass yields to be roughly 2.6 (=353.7 g mol⁻¹ / 136.1 g mol⁻¹) times the molar yield. The value in this study is slightly larger than the factor 2.4 calculated for the α -pinene ozonolysis system.⁶ This indicates that reactions with NO₃ radicals lead to higher mass oxidation products, as expected, and contribute more to SOA than ozonolysis reactions. The converted mass yields of HOM-ON from β-pinene + NO₃ were averaged to 12.5% (-6.8%/+14.6%), assuming that the volatility of HOM-ON was low enough to condense irreversibly onto the particle phase.⁶, 45 Considering the SOA yields of $\beta\text{-pinene}$ + NO3, $^{18\text{-}20,\ 22,\ 23,\ 26}$ these HOM-ON should

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

contribute a significant fraction, especially at low organic aerosol loadings in ambient atmosphere. Note that the volatility of HOM-ON was not determined in this study. Yet Pullinen et al. 45 determined a range of 0.5-1 for effective uptake coefficients of HOM-ON from β -pinene + OH. Therefore, it is reasonable to approximate the uptake of most of the HOM-ON as being irreversible when estimating their contribution to SOA. Even an uptake coefficient of 0.5 would cause HOM to condense efficiently on particles. Assuming that all HOM condensing on particles provides an upper limit of the contribution of HOM-ON to SOA, and most of HOM will thus reside in the particle phase. Although HOM-ON in this study are not identical to those in Pullinen et al., 45 they are expected to have generally similar structures, and HOM-ON contribution to SOA formation is considered to be significant in β -pinene + NO₃ reactions.

Atmospheric Implications

We observed a large number of HOM-ON formed from NO₃ oxidation of β-pinene in the SAPHIR chamber, including six monomer (C=7-10, N=1-2, O=6-16) and five accretion product (C=17-20, N=2-4, O=9-22) families. An example formation mechanism was proposed and constrained based on the time series of the closed-shell HOM, which were different for first- and second-generation products and depended on the precursor RO₂•. Such HOM-ON are expected to be formed under the conditions of the nocturnal planetary boundary layer (PBL), especially when both biogenic VOC and anthropogenic NO_x sources are present. Recent field studies have shown that these HOM-ON are prevalent at night-

time in the Southeastern US and contribute to a large fraction of SOA.^{13, 15} The precursor peroxy radicals, especially C₁₀H₁₆NO₉•, formed from monoterpene + NO₃ are observed at night-time in SORPES station in eastern China, where the BVOC oxidation is strongly influenced by NO_x.⁸⁵

Direct experimental evidence was provided in our study to highlight the importance of the unimolecular H-shift termination pathway in the NO₃ system, producing unsaturated carbonylnitrates as first-generation products, similar to OH systems.^{32, 55, 74} We expect that a large portion of HOM-ON formed at night-time in the ambient atmosphere over a forest environment affected by anthropogenic emissions contains a carbonyl group and one or more -OOH groups, in addition to the initiating -NO₃ group. These unsaturated first-generation carbonylnitrates are anticipated to react further with additional NO₃ and lead to the formation of second-generation products. Although some studies found that second-generation ON containing two or more nitrogens were much less abundant than mononitrates, ⁸⁶ second-generation products might be important when NO₃ is abundant or during the next day when unsaturated carbonylnitrate can react with OH.

The production yields of HOM-ON from β -pinene + NO₃ were estimated with a mean molar yield of 4.8% (-2.6%/+5.6%). This yield is much higher than the HOM yield in β -pinene oxidation by OH (0.58%) and O₃ (0.12%) reported by Jokinen et al.⁸³ and HOM yield in the isoprene oxidation by NO₃ (1.2%).⁸⁷ This higher HOM yield of β -pinene + NO₃ indicated the potential significance of HOM-ON to the formation of SOA in the

nocturnal PBL in areas influenced by biogenic VOC and anthropogenic NO_x emissions as observed by a number of field studies. ⁸⁸ Incorporating the HOM-ON yield determined in this study into future models can lead to a better interpretation of ambient data and a more accurate prediction of atmospheric and climate effects of β-pinene + NO₃ reactions. Furthermore, negligible second-generation products are included in the production yield. It is unclear that whether their contribution to HOM yields will outweigh the first-generation products and further influence the SOA formation in the ambient atmosphere. Further laboratory studies and field observations are needed.

SUPPORTING INFORMATION

Additional information deriving the calibration coefficient of CIMS and HOM yields (Section S1) and calculations of RO₂• bimolecular loss rates (Section S2); figures showing the experimental procedure (Figure S1); relative contributions of reactions of β-pinene with NO₃ and O₃ to total β-pinene loss (Figure S2); SMPS data (Figure S3); the average mass spectrum of each experimental period (Figure S4); time series of residuals (Figure S5); RO₂• bimolecular loss rates (Figure S6); peroxy radicals of C₁₀H₁₆NO_x• (Figure S7); C7 compounds (Figure S8); second-generation products (Figure S9); and permutation reactions of identified first-generation NO₃-RO₂• radicals (Figure S10) and C₁₀H₁₆NO_x• (Figure S11). Schemes demonstrating HOM formation mechanism involving RO₂• (Scheme S1); general autoxidation of NO₃ oxidation of β-pinene (Scheme S2); the simplified HOM formation pathway proposed in prior studies (Scheme S3); the possible

- 621 formation pathway of C7 compounds (Scheme S4); and example formation pathway of
- second-generation products (Scheme S5); tables listing HR peak list (Table S1); reaction
- rates used to calculate RO₂• bimolecular loss rates (Table S2); and relative intensities of
- 624 the C₇H₉₋₁₁NO₈₋₁₂ product family (Table S3).

625 ACKNOWLEDGMENTS

- 626 The authors thank the SAPHIR team for supporting our measurements and providing
- helpful data. H.S and D.Z would like to thank the funding support of the National Natural
- 628 Science Foundation of China (41875145) and Science and Technology Commission of
- 629 Shanghai Municipality (20230711400).

630 REFERENCES

- 631 (1) Sindelarova, K.; Granier, C.; Bouarar, I.; Guenther, A.; Tilmes, S.; Stavrakou, T.;
- Müller, J. F.; Kuhn, U.; Stefani, P.; Knorr, W., Global data set of biogenic VOC emissions
- calculated by the MEGAN model over the last 30 years. Atmos. Chem. Phys. 2014, 14 (17),
- 634 9317-9341.
- 635 (2) Berndt, T.; Richters, S.; Jokinen, T.; Hyttinen, N.; Kurtén, T.; Otkjær, R. V.; Kjaergaard,
- 636 H. G.; Stratmann, F.; Herrmann, H.; Sipilä, M.; Kulmala, M.; Ehn, M., Hydroxyl radical-
- 637 induced formation of highly oxidized organic compounds. *Nat. Commun.* **2016**, 7, 13677.
- 638 (3) Surratt, J. D.; Chan, A. W. H.; Eddingsaas, N. C.; Chan, M. N.; Loza, C. L.; Kwan, A.
- 639 J.; Hersey, S. P.; Flagan, R. C.; Wennberg, P. O.; Seinfeld, J. H., Reactive intermediates
- 640 revealed in secondary organic aerosol formation from isoprene. Proc. Natl. Acad. Sci.
- 641 *U.S.A.* **2010**, *107* (15), 6640-6645.
- 642 (4) Brown, S. S.; Stutz, J., Nighttime radical observations and chemistry. Chem. Soc. Rev.
- 643 **2012**, *41* (19), 6405-6447.
- 644 (5) Ng, N. L.; Brown, S. S.; Archibald, A. T.; Atlas, E.; Cohen, R. C.; Crowley, J. N.; Day,
- D. A.; Donahue, N. M.; Fry, J. L.; Fuchs, H.; Griffin, R. J.; Guzman, M. I.; Herrmann, H.;
- 646 Hodzic, A.; Iinuma, Y.; Jimenez, J. L.; Kiendler-Scharr, A.; Lee, B. H.; Luecken, D. J.;
- Mao, J. Q.; McLaren, R.; Mutzel, A.; Osthoff, H. D.; Ouyang, B.; Picquet-Varrault, B.;
- Platt, U.; Pye, H. O. T.; Rudich, Y.; Schwantes, R. H.; Shiraiwa, M.; Stutz, J.; Thornton, J.
- 649 A.; Tilgner, A.; Williams, B. J.; Zaveri, R. A., Nitrate radicals and biogenic volatile organic

- 650 compounds: oxidation, mechanisms, and organic aerosol. Atmos. Chem. Phys. 2017, 17
- 651 (3), 2103-2162.
- 652 (6) Ehn, M.; Thornton, J. A.; Kleist, E.; Sipilä, M.; Junninen, H.; Pullinen, I.; Springer, M.;
- Rubach, F.; Tillmann, R.; Lee, B.; Lopez-Hilfiker, F.; Andres, S.; Acir, I. H.; Rissanen, M.;
- Jokinen, T.; Schobesberger, S.; Kangasluoma, J.; Kontkanen, J.; Nieminen, T.; Kurtén, T.;
- Nielsen, L. B.; Jørgensen, S.; Kjaergaard, H. G.; Canagaratna, M.; Dal Maso, M.; Berndt,
- 656 T.; Petäjä, T.; Wahner, A.; Kerminen, V. M.; Kulmala, M.; Worsnop, D. R.; Wildt, J.;
- Mentel, T. F., A large source of low-volatility secondary organic aerosol. *Nature* **2014**, *506*
- 658 (7489), 476-479.
- 659 (7) Tröstl, J.; Chuang, W. K.; Gordon, H.; Heinritzi, M.; Yan, C.; Molteni, U.; Ahlm, L.;
- Frege, C.; Bianchi, F.; Wagner, R.; Simon, M.; Lehtipalo, K.; Williamson, C.; Craven, J.
- 661 S.; Duplissy, J.; Adamov, A.; Almeida, J.; Bernhammer, A. K.; Breitenlechner, M.; Brilke,
- 662 S.; Dias, A.; Ehrhart, S.; Flagan, R. C.; Franchin, A.; Fuchs, C.; Guida, R.; Gysel, M.;
- Hansel, A.; Hoyle, C. R.; Jokinen, T.; Junninen, H.; Kangasluoma, J.; Keskinen, H.; Kim,
- J.; Krapf, M.; Kürten, A.; Laaksonen, A.; Lawler, M.; Leiminger, M.; Mathot, S.; Möhler,
- O.; Nieminen, T.; Onnela, A.; Petäjä, T.; Piel, F. M.; Miettinen, P.; Rissanen, M. P.; Rondo,
- 666 L.; Sarnela, N.; Schobesberger, S.; Sengupta, K.; Sipilä, M.; Smith, J. N.; Steiner, G.; Tomè,
- A.; Virtanen, A.; Wagner, A. C.; Weingartner, E.; Wimmer, D.; Winkler, P. M.; Ye, P. L.;
- 668 Carslaw, K. S.; Curtius, J.; Dommen, J.; Kirkby, J.; Kulmala, M.; Riipinen, I.; Worsnop, D.
- R.; Donahue, N. M.; Baltensperger, U., The role of low-volatility organic compounds in
- initial particle growth in the atmosphere. *Nature* **2016**, *533* (7604), 527-531.
- 671 (8) Hallquist, M.; Wenger, J. C.; Baltensperger, U.; Rudich, Y.; Simpson, D.; Claeys, M.;
- Dommen, J.; Donahue, N. M.; George, C.; Goldstein, A. H.; Hamilton, J. F.; Herrmann,
- 673 H.; Hoffmann, T.; Iinuma, Y.; Jang, M.; Jenkin, M. E.; Jimenez, J. L.; Kiendler-Scharr, A.;
- Maenhaut, W.; McFiggans, G.; Mentel, T. F.; Monod, A.; Prévôt, A. S. H.; Seinfeld, J. H.;
- 675 Surratt, J. D.; Szmigielski, R.; Wildt, J., The formation, properties and impact of secondary
- organic aerosol: current and emerging issues. Atmos. Chem. Phys. 2009, 9 (14), 5155-5236.
- 677 (9) Shrivastava, M.; Cappa, C. D.; Fan, J. W.; Goldstein, A. H.; Guenther, A. B.; Jimenez,
- 678 J. L.; Kuang, C.; Laskin, A.; Martin, S. T.; Ng, N. L.; Petaja, T.; Pierce, J. R.; Rasch, P. J.;
- Roldin, P.; Seinfeld, J. H.; Shilling, J.; Smith, J. N.; Thornton, J. A.; Volkamer, R.; Wang,
- 680 J.; Worsnop, D. R.; Zaveri, R. A.; Zelenyuk, A.; Zhang, Q., Recent advances in
- understanding secondary organic aerosol: implications for global climate forcing. Rev.
- 682 Geophys. **2017**, 55 (2), 509-559.
- 683 (10) Ng, N. L.; Kwan, A. J.; Surratt, J. D.; Chan, A. W. H.; Chhabra, P. S.; Sorooshian, A.;
- Pye, H. O. T.; Crounse, J. D.; Wennberg, P. O.; Flagan, R. C.; Seinfeld, J. H., Secondary
- organic aerosol (SOA) formation from reaction of isoprene with nitrate radicals (NO₃).
- 686 Atmos. Chem. Phys. **2008**, 8 (14), 4117-4140.
- 687 (11) Rollins, A. W.; Kiendler-Scharr, A.; Fry, J. L.; Brauers, T.; Brown, S. S.; Dorn, H. P.;
- Dubé, W. P.; Fuchs, H.; Mensah, A.; Mentel, T. F.; Rohrer, F.; Tillmann, R.; Wegener, R.;

- Wooldridge, P. J.; Cohen, R. C., Isoprene oxidation by nitrate radical: alkyl nitrate and
- secondary organic aerosol yields. Atmos. Chem. Phys. 2009, 9 (18), 6685-6703.
- 691 (12) Pye, H. O. T.; Chan, A. W. H.; Barkley, M. P.; Seinfeld, J. H., Global modeling of
- organic aerosol: the importance of reactive nitrogen (NO_x and NO₃). Atmos. Chem. Phys.
- 693 **2010**, *10* (22), 11261-11276.
- 694 (13) Ayres, B. R.; Allen, H. M.; Draper, D. C.; Brown, S. S.; Wild, R. J.; Jimenez, J. L.;
- Day, D. A.; Campuzano-Jost, P.; Hu, W.; de Gouw, J.; Koss, A.; Cohen, R. C.; Duffey, K.
- 696 C.; Romer, P.; Baumann, K.; Edgerton, E.; Takahama, S.; Thornton, J. A.; Lee, B. H.;
- 697 Lopez-Hilfiker, F. D.; Mohr, C.; Wennberg, P. O.; Nguyen, T. B.; Teng, A.; Goldstein, A.
- 698 H.; Olson, K.; Fry, J. L., Organic nitrate aerosol formation via NO₃ + biogenic volatile
- organic compounds in the southeastern United States. Atmos. Chem. Phys. 2015, 15 (23),
- 700 13377-13392.
- 701 (14) Fisher, J. A.; Jacob, D. J.; Travis, K. R.; Kim, P. S.; Marais, E. A.; Miller, C. C.; Yu,
- 702 K. R.; Zhu, L.; Yantosca, R. M.; Sulprizio, M. P.; Mao, J. Q.; Wennberg, P. O.; Crounse, J.
- 703 D.; Teng, A. P.; Nguyen, T. B.; St Clair, J. M.; Cohen, R. C.; Romer, P.; Nault, B. A.;
- Wooldridge, P. J.; Jimenez, J. L.; Campuzano-Jost, P.; Day, D. A.; Hu, W. W.; Shepson, P.
- 705 B.; Xiong, F. L. Z.; Blake, D. R.; Goldstein, A. H.; Misztal, P. K.; Hanisco, T. F.; Wolfe, G.
- 706 M.; Ryerson, T. B.; Wisthaler, A.; Mikoviny, T., Organic nitrate chemistry and its
- 707 implications for nitrogen budgets in an isoprene- and monoterpene-rich atmosphere:
- 708 constraints from aircraft (SEAC(4)RS) and ground-based (SOAS) observations in the
- 709 Southeast US. Atmos. Chem. Phys. **2016**, 16 (9), 5969-5991.
- 710 (15) Xu, L.; Guo, H. Y.; Boyd, C. M.; Klein, M.; Bougiatioti, A.; Cerully, K. M.; Hite, J.
- 711 R.; Isaacman-VanWertz, G.; Kreisberg, N. M.; Knote, C.; Olson, K.; Koss, A.; Goldstein,
- 712 A. H.; Hering, S. V.; de Gouw, J.; Baumann, K.; Lee, S. H.; Nenes, A.; Weber, R. J.; Ng,
- 713 N. L., Effects of anthropogenic emissions on aerosol formation from isoprene and
- 714 monoterpenes in the southeastern United States. Proc. Natl. Acad. Sci. U.S.A. 2015, 112
- 715 (1), 37-42.
- 716 (16) Guenther, A. B.; Jiang, X.; Heald, C. L.; Sakulyanontvittaya, T.; Duhl, T.; Emmons,
- 717 L. K.; Wang, X., The model of emissions of gases and aerosols from nature version 2.1
- 718 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions.
- 719 Geosci. Model. Dev. **2012**, 5 (6), 1471-1492.
- 720 (17) Atkinson, R.; Arey, J., Atmospheric degradation of volatile organic compounds. *Chem.*
- 721 Rev. **2003**, 103 (12), 4605-4638.
- 722 (18) Griffin, R. J.; Cocker, D. R.; Flagan, R. C.; Seinfeld, J. H., Organic aerosol formation
- from the oxidation of biogenic hydrocarbons. J. Geophys. Res.: Atmos. 1999, 104 (D3),
- 724 3555-3567.
- 725 (19) Fry, J. L.; Kiendler-Scharr, A.; Rollins, A. W.; Wooldridge, P. J.; Brown, S. S.; Fuchs,
- 726 H.; Dubé, W.; Mensah, A.; dal Maso, M.; Tillmann, R.; Dorn, H. P.; Brauers, T.; Cohen, R.
- 727 C., Organic nitrate and secondary organic aerosol yield from NO₃ oxidation of beta-pinene

- evaluated using a gas-phase kinetics/aerosol partitioning model. *Atmos. Chem. Phys.* **2009**,
- 729 9 (4), 1431-1449.
- 730 (20) Boyd, C. M.; Sanchez, J.; Xu, L.; Eugene, A. J.; Nah, T.; Tuet, W. Y.; Guzman, M. I.;
- Ng, N. L., Secondary organic aerosol formation from the beta-pinene+NO₃ system: effect
- 732 of humidity and peroxy radical fate. *Atmos. Chem. Phys.* **2015**, *15* (13), 7497-7522.
- 733 (21) Claflin, M. S.; Ziemann, P. J., Identification and quantitation of aerosol products of
- 734 the reaction of beta-pinene with NO₃ radicals and implications for gas- and particle-phase
- 735 reaction mechanisms. J. Phys. Chem. A **2018**, 122 (14), 3640-3652.
- 736 (22) Fry, J. L.; Draper, D. C.; Barsanti, K. C.; Smith, J. N.; Ortega, J.; Winkle, P. M.;
- 737 Lawler, M. J.; Brown, S. S.; Edwards, P. M.; Cohen, R. C.; Lee, L., Secondary organic
- aerosol formation and organic nitrate yield from NO₃ oxidation of biogenic hydrocarbons.
- 739 Environ. Sci. Technol. 2014, 48 (20), 11944-11953.
- 740 (23) Hallquist, M.; Wängberg, I.; Ljungström, E.; Barnes, I.; Becker, K. H., Aerosol and
- 741 product yields from NO₃ radical-initiated oxidation of selected monoterpenes. *Environ. Sci.*
- 742 *Technol.* **1999**, *33* (4), 553-559.
- 743 (24) Perraud, V.; Bruns, E. A.; Ezell, M. J.; Johnson, S. N.; Greaves, J.; Finlayson-Pitts, B.
- J., Identification of organic nitrates in the NO₃ radical initiated oxidation of alpha-pinene
- by atmospheric pressure chemical ionization mass spectrometry. Environ. Sci. Technol.
- 746 **2010**, 44 (15), 5887-5893.
- 747 (25) Spittler, M.; Barnes, I.; Bejan, I.; Brockmann, K. J.; Benter, T.; Wirtz, K., Reactions
- of NO₃ radicals with limonene and alpha-pinene: product and SOA formation. Atmos.
- 749 Environ. 2006, 40 S116-S127.
- 750 (26) Lambe, A. T.; Wood, E. C.; Krechmer, J. E.; Majluf, F.; Williams, L. R.; Croteau, P.
- 751 L.; Cirtog, M.; Féron, A.; Petit, J. E.; Albinet, A.; Jimenez, J. L.; Peng, Z., Nitrate radical
- 752 generation via continuous generation of dinitrogen pentoxide in a laminar flow reactor
- 753 coupled to an oxidation flow reactor. Atmos. Meas. Tech. 2020, 13 (5), 2397-2411.
- 754 (27) Bianchi, F.; Kurtén, T.; Riva, M.; Mohr, C.; Rissanen, M. P.; Roldin, P.; Berndt, T.;
- 755 Crounse, J. D.; Wennberg, P. O.; Mentel, T. F.; Wildt, J.; Junninen, H.; Jokinen, T.; Kulmala,
- 756 M.; Worsnop, D. R.; Thornton, J. A.; Donahue, N.; Kjaergaard, H. G.; Ehn, M., Highly
- 757 oxygenated organic molecules (HOM) from gas-phase autoxidation involving peroxy
- radicals: a key contributor to atmospheric aerosol. Chem. Rev. 2019, 119 (6), 3472-3509.
- 759 (28) Huang, W.; Saathoff, H.; Shen, X. L.; Ramisetty, R.; Leisner, T.; Mohr, C., Chemical
- 760 characterization of highly functionalized organonitrates contributing to night-time organic
- aerosol mass loadings and particle growth. Environ. Sci. Technol. 2019, 53 (3), 1165-1174.
- 701 delosof mass loadings and particle grown. Environ. Sci. Technol. 2017, 35 (3), 1105 1171
- 762 (29) Kirkby, J.; Duplissy, J.; Sengupta, K.; Frege, C.; Gordon, H.; Williamson, C.;
- Heinritzi, M.; Simon, M.; Yan, C.; Almeida, J.; Tröstl, J.; Nieminen, T.; Ortega, I. K.;
- Wagner, R.; Adamov, A.; Amorim, A.; Bernhammer, A. K.; Bianchi, F.; Breitenlechner, M.;
- 765 Brilke, S.; Chen, X. M.; Craven, J.; Dias, A.; Ehrhart, S.; Flagan, R. C.; Franchin, A.; Fuchs,
- 766 C.; Guida, R.; Hakala, J.; Hoyle, C. R.; Jokinen, T.; Junninen, H.; Kangasluoma, J.; Kim,

- 767 J.; Krapf, M.; Kürten, A.; Laaksonen, A.; Lehtipalo, K.; Makhmutov, V.; Mathot, S.;
- Molteni, U.; Onnela, A.; Peräkylä, O.; Piel, F.; Petäjä, T.; Praplan, A. P.; Pringle, K.; Rap,
- A.; Richards, N. A. D.; Riipinen, I.; Rissanen, M. P.; Rondo, L.; Sarnela, N.; Schobesberger,
- 770 S.; Scott, C. E.; Seinfeld, J. H.; Sipilä, M.; Steiner, G.; Stozhkov, Y.; Stratmann, F.; Tomé,
- A.; Virtanen, A.; Vogel, A. L.; Wagner, A. C.; Wagner, P. E.; Weingartner, E.; Wimmer, D.;
- Winkler, P. M.; Ye, P. L.; Zhang, X.; Hansel, A.; Dommen, J.; Donahue, N. M.; Worsnop,
- 773 D. R.; Baltensperger, U.; Kulmala, M.; Carslaw, K. S.; Curtius, J., Ion-induced nucleation
- 774 of pure biogenic particles. *Nature* **2016**, *533* (7604), 521-525.
- 775 (30) Nah, T.; Sanchez, J.; Boyd, C. M.; Ng, N. L., Photochemical aging of alpha-pinene
- and beta-pinene secondary organic aerosol formed from nitrate radical oxidation. *Environ*.
- 777 Sci. Technol. **2016**, 50 (1), 222-231.
- 778 (31) Takeuchi, M.; Ng, N. L., Chemical composition and hydrolysis of organic nitrate
- 779 aerosol formed from hydroxyl and nitrate radical oxidation of alpha-pinene and beta-
- 780 pinene. Atmos. Chem. Phys. 2019, 19 (19), 12749-12766.
- 781 (32) Crounse, J. D.; Nielsen, L. B.; Jørgensen, S.; Kjaergaard, H. G.; Wennberg, P. O.,
- Autoxidation of organic compounds in the atmosphere. J. Phys. Chem. Lett. 2013, 4 (20),
- 783 3513-3520.
- 784 (33) Mentel, T. F.; Springer, M.; Ehn, M.; Kleist, E.; Pullinen, I.; Kurtén, T.; Rissanen, M.;
- 785 Wahner, A.; Wildt, J., Formation of highly oxidized multifunctional compounds:
- 786 autoxidation of peroxy radicals formed in the ozonolysis of alkenes deduced from
- structure-product relationships. Atmos. Chem. Phys. 2015, 15 (12), 6745-6765.
- 788 (34) Bohn, B.; Rohrer, F.; Brauers, T.; Wahner, A., Actinometric measurements of NO₂
- 789 photolysis frequencies in the atmosphere simulation chamber SAPHIR. Atmos. Chem.
- 790 *Phys.* **2005**, *5* 493-503.
- 791 (35) Rohrer, F.; Bohn, B.; Brauers, T.; Brüning, D.; Johnen, F. J.; Wahner, A.; Kleffmann,
- 792 J., Characterisation of the photolytic HONO-source in the atmosphere simulation chamber
- 793 SAPHIR. Atmos. Chem. Phys. **2005**, 5 2189-2201.
- 794 (36) Sarrafzadeh, M.; Wildt, J.; Pullinen, I.; Springer, M.; Kleist, E.; Tillmann, R.; Schmitt,
- 795 S. H.; Wu, C.; Mentel, T. F.; Zhao, D. F.; Hastie, D. R.; Kiendler-Scharr, A., Impact of NO_x
- and OH on secondary organic aerosol formation from beta-pinene photooxidation. *Atmos.*
- 797 Chem. Phys. **2016**, 16 (17), 11237-11248.
- 798 (37) Zhao, D. F.; Schmitt, S. H.; Wang, M. J.; Acir, I. H.; Tillmann, R.; Tan, Z. F.; Novelli,
- 799 A.; Fuchs, H.; Pullinen, I.; Wegener, R.; Rohrer, F.; Wildt, J.; Kiendler-Scharr, A.; Wahner,
- 800 A.; Mentel, T. F., Effects of NO_x and SO₂ on the secondary organic aerosol formation from
- photooxidation of alpha-pinene and limonene. Atmos. Chem. Phys. 2018, 18 (3), 1611-
- 802 1628.
- 803 (38) Wagner, N. L.; Dubé, W. P.; Washenfelder, R. A.; Young, C. J.; Pollack, I. B.; Ryerson,
- 804 T. B.; Brown, S. S., Diode laser-based cavity ring-down instrument for NO₃, N₂O₅, NO,
- 805 NO₂ and O₃ from aircraft. Atmos. Meas. Tech. 2011, 4 (6), 1227-1240.

- 806 (39) Saunders, S. M.; Jenkin, M. E.; Derwent, R. G.; Pilling, M. J., Protocol for the
- 807 development of the Master Chemical Mechanism, MCM v3 (Part A): tropospheric
- degradation of non-aromatic volatile organic compounds. Atmos. Chem. Phys. 2003, 3 161-
- 809 180.
- 810 (40) Hyttinen, N.; Rissanen, M. P.; Kurtén, T., Computational comparison of acetate and
- 811 nitrate chemical ionization of highly oxidized cyclohexene ozonolysis intermediates and
- 812 products. J. Phys. Chem. A. **2017**, 121 (10), 2172-2179.
- 813 (41) Draper, D. C.; Myllys, N.; Hyttinen, N.; Møller, K. H.; Kjaergaard, H. G.; Fry, J. L.;
- 814 Smith, J. N.; Kurtén, T., Formation of highly oxidized molecules from NO₃ radical initiated
- oxidation of delta-3-carene: a mechanistic study. ACS Earth Space Chem. 2019, 3 (8),
- 816 1460-1470.
- 817 (42) Massoli, P.; Stark, H.; Canagaratna, M. R.; Krechmer, J. E.; Xu, L.; Ng, N. L.;
- Mauldin, R. L.; Yan, C.; Kimmel, J.; Misztal, P. K.; Jimenez, J. L.; Jayne, J. T.; Worsnop,
- D. R., Ambient measurements of highly oxidized gas-phase molecules during the Southern
- 820 Oxidant and Aerosol Study (SOAS) 2013. ACS Earth Space Chem. 2018, 2 (7), 653-672.
- 821 (43) Wennberg, P. O.; Bates, K. H.; Crounse, J. D.; Dodson, L. G.; McVay, R. C.; Mertens,
- L. A.; Nguyen, T. B.; Praske, E.; Schwantes, R. H.; Smarte, M. D.; St Clair, J. M.; Teng, A.
- 823 P.; Zhang, X.; Seinfeld, J. H., Gas-phase reactions of isoprene and its major oxidation
- 824 products. Chem. Rev. 2018, 118 (7), 3337-3390.
- 825 (44) Zhao, D. F.; Pullinen, I.; Fuchs, H.; Schrade, S.; Wu, R. R.; Acir, I. H.; Tillmann, R.;
- 826 Rohrer, F.; Wildt, J.; Guo, Y. D.; Kiendler-Scharr, A.; Wahner, A.; Kang, S.; Vereecken, L.;
- 827 Mentel, T. F., Highly oxygenated organic molecule (HOM) formation in the isoprene
- 828 oxidation by NO₃ radical. *Atmos. Chem. Phys.* **2021**, *21* (12), 9681-9704.
- 829 (45) Pullinen, I.; Schmitt, S.; Kang, S.; Sarrafzadeh, M.; Schlag, P.; Andres, S.; Kleist, E.;
- Mentel, T. F.; Rohrer, F.; Springer, M.; Tillmann, R.; Wildt, J.; Wu, C.; Zhao, D. F.; Wahner,
- 831 A.; Kiendler-Scharr, A., Impact of NO_x on secondary organic aerosol (SOA) formation
- from alpha-pinene and beta-pinene photooxidation: the role of highly oxygenated organic
- 833 nitrates. Atmos. Chem. Phys. **2020**, 20 (17), 10125-10147.
- 834 (46) Zhao, D. F.; Kaminski, M.; Schlag, P.; Fuchs, H.; Acir, I. H.; Bohn, B.; Häseler, R.;
- 835 Kiendler-Scharr, A.; Rohrer, F.; Tillmann, R.; Wang, M. J.; Wegener, R.; Wildt, J.; Wahner,
- 836 A.; Mentel, T. F., Secondary organic aerosol formation from hydroxyl radical oxidation
- 837 and ozonolysis of monoterpenes. *Atmos. Chem. Phys.* **2015**, *15* (2), 991-1012.
- 838 (47) Huang, Y. L.; Zhao, R.; Charan, S. M.; Kenseth, C. M.; Zhang, X.; Seinfeld, J. H.,
- 839 Unified theory of vapor-wall mass transport in teflon-walled environmental chambers.
- 840 Environ. Sci. Technol. **2018**, *52* (4), 2134-2142.
- 841 (48) Riva, M.; Rantala, P.; Krechmer, J. E.; Peräkylä, O.; Zhang, Y. J.; Heikkinen, L.;
- 642 Garmash, O.; Yan, C.; Kulmala, M.; Worsnop, D.; Ehn, M., Evaluating the performance of
- 843 five different chemical ionization techniques for detecting gaseous oxygenated organic
- 844 species. Atmos. Meas. Tech. 2019, 12 (4), 2403-2421.

- 845 (49) Lee, B. H.; Lopez-Hilfiker, F. D.; Mohr, C.; Kurtén, T.; Worsnop, D. R.; Thornton, J.
- 846 A., An iodide-adduct high-resolution time-of-flight chemical-ionization mass
- spectrometer: application to atmospheric inorganic and organic compounds. *Environ. Sci.*
- 848 *Technol.* **2014**, *48* (11), 6309-6317.
- 849 (50) Jenkin, M. E.; Valorso, R.; Aumont, B.; Rickard, A. R., Estimation of rate coefficients
- 850 and branching ratios for reactions of organic peroxy radicals for use in automated
- 851 mechanism construction. *Atmos. Chem. Phys.* **2019**, *19* (11), 7691-7717.
- 852 (51) Wang, S. Y.; Pratt, K. A., Molecular halogens above the arctic snowpack: emissions,
- diurnal variations, and recycling mechanisms. J. Geophys. Res.: Atmos. 2017, 122 (21),
- 854 11991-12007.
- 855 (52) Vereecken, L.; Francisco, J. S., Theoretical studies of atmospheric reaction
- 856 mechanisms in the troposphere. *Chem. Soc. Rev.* **2012**, *41* (19), 6259-6293.
- 857 (53) Vereecken, L.; Peeters, J., A structure-activity relationship for the rate coefficient of
- H-migration in substituted alkoxy radicals. Phys. Chem. Chem. Phys. 2010, 12 (39), 12608-
- 859 12620.
- 860 (54) Praske, E.; Otkjær, R. V.; Crounse, J. D.; Hethcox, J. C.; Stoltz, B. M.; Kjaergaard, H.
- 861 G.; Wennberg, P. O., Atmospheric autoxidation is increasingly important in urban and
- 862 suburban North America. *Proc. Natl. Acad. Sci. U.S.A.* **2018**, *115* (1), 64-69.
- 863 (55) Rissanen, M. P.; Kurtén, T.; Sipilä, M.; Thornton, J. A.; Kangasluoma, J.; Sarnela, N.;
- Junninen, H.; Jørgensen, S.; Schallhart, S.; Kajos, M. K.; Taipale, R.; Springer, M.; Mentel,
- T. F.; Ruuskanen, T.; Petäjä, T.; Worsnop, D. R.; Kjaergaard, H. G.; Ehn, M., The formation
- of highly oxidized multifunctional products in the ozonolysis of cyclohexene. J. Am. Chem.
- 867 Soc. **2014**, 136 (44), 15596-15606.
- 868 (56) Vereecken, L.; Nozière, B., H migration in peroxy radicals under atmospheric
- 869 conditions. Atmos. Chem. Phys. **2020**, 20 (12), 7429-7458.
- 870 (57) Atkinson, R.; Arey, J.; Aschmann, S. M., Atmospheric chemistry of alkanes: review
- and recent developments. *Atmos. Environ.* **2008**, *42* (23), 5859-5871.
- 872 (58) Yeh, G. K.; Claflin, M. S.; Ziemann, P. J., Products and mechanism of the reaction of
- 873 1-pentadecene with NO₃ radicals and the effect of a -ONO₂ group on alkoxy radical
- 874 decomposition. J. Phys. Chem. A **2015**, 119 (43), 10684-10696.
- 875 (59) Kroll, J. H.; Seinfeld, J. H., Chemistry of secondary organic aerosol: formation and
- evolution of low-volatility organics in the atmosphere. Atmos. Environ. 2008, 42 (16),
- 877 3593-3624.
- 878 (60) Novelli, A.; Cho, C.; Fuchs, H.; Hofzumahaus, A.; Rohrer, F.; Tillmann, R.; Kiendler-
- 879 Scharr, A.; Wahner, A.; Vereecken, L., Experimental and theoretical study on the impact of
- a nitrate group on the chemistry of alkoxy radicals. Phys. Chem. Chem. Phys. 2021, 23 (9),
- 881 5474-5495.

- 882 (61) Vereecken, L.; Peeters, J., Decomposition of substituted alkoxy radicals-part I: a
- generalized structure-activity relationship for reaction barrier heights. *Phys. Chem. Chem.*
- 884 *Phys.* **2009**, *11* (40), 9062-9074.
- 885 (62) Lachowicz, D. R.; Kreuz, K. L., Peroxy nitrates. Unstable products of olefin nitration
- with dinitrogen tetroxide in the presence of oxygen. New route to .alpha.-nitroketones. J.
- 887 Org. Chem. 1967, 32 (12), 3885-3888.
- 888 (63) Bennett, J. E.; Summers, R., Product studies of the mutual termination reactions of
- sec-alkylperoxy radicals: evidence for non-cyclic termination. Can. J. Chem. 1974, 52 (8),
- 890 1377-1379.
- 891 (64) Chim, M. M.; Cheng, C. T.; Davies, J. F.; Berkemeier, T.; Shiraiwa, M.; Zuend, A.;
- 892 Chan, M. N., Compositional evolution of particle-phase reaction products and water in the
- heterogeneous OH oxidation of model aqueous organic aerosols. Atmos. Chem. Phys. 2017,
- 894 17 (23), 14415-14431.
- 895 (65) Jenkin, M. E.; Saunders, S. M.; Pilling, M. J., The tropospheric degradation of volatile
- organic compounds: a protocol for mechanism development. Atmos. Environ. 1997, 31 (1),
- 897 81-104.
- 898 (66) Junninen, H.; Ehn, M.; Petäjä, T.; Luosujarvi, L.; Kotiaho, T.; Kostiainen, R.; Rohner,
- 899 U.; Gonin, M.; Fuhrer, K.; Kulmala, M.; Worsnop, D. R., A high-resolution mass
- spectrometer to measure atmospheric ion composition. Atmos. Meas. Tech. 2010, 3 (4),
- 901 1039-1053.
- 902 (67) Paulot, F.; Crounse, J. D.; Kjaergaard, H. G.; Kürten, A.; St Clair, J. M.; Seinfeld, J.
- 903 H.; Wennberg, P. O., Unexpected epoxide formation in the gas-phase photooxidation of
- 904 isoprene. *Science* **2009**, *325* (5941), 730-733.
- 905 (68) Praske, E.; Otkjær, R. V.; Crounse, J. D.; Hethcox, J. C.; Stoltz, B. M.; Kjaergaard, H.
- 906 G.; Wennberg, P. O., Intramolecular hydrogen shift chemistry of hydroperoxy-substituted
- 907 peroxy radicals. J. Phys. Chem. A **2019**, 123 (2), 590-600.
- 908 (69) Miyoshi, A., Systematic computational study on the unimolecular reactions of
- alkylperoxy (RO₂), hydroperoxyalkyl (QOOH), and hydroperoxyalkylperoxy (O₂QOOH)
- 910 radicals. J. Phys. Chem. A **2011**, 115 (15), 3301-3325.
- 911 (70) Peeters, J.; Müller, J. F.; Stavrakou, T.; Nguyen, V. S., Hydroxyl radical recycling in
- 912 isoprene oxidation driven by hydrogen bonding and hydrogen tunneling: the upgraded
- 913 LIM1 mechanism. J. Phys. Chem. A **2014**, 118 (38), 8625-8643.
- 914 (71) Kerdouci, J.; Picquet-Varrault, B.; Doussin, J. F., Prediction of rate constants for gas-
- 915 phase reactions of nitrate radical with organic compounds: a new structure-activity
- 916 relationship. Chem. Phys. Chem. 2010, 11 (18), 3909-3920.
- 917 (72) Vereecken, L.; Peeters, J., A theoretical study of the OH-initiated gas-phase oxidation
- 918 mechanism of β-pinene (C₁₀H₁₆): first generation products. *Phys. Chem. Chem. Phys.* **2012**,
- 919 14 (11), 3802-3815.

- 920 (73) Kaminski, M.; Fuchs, H.; Acir, I. H.; Bohn, B.; Brauers, T.; Dorn, H. P.; Häseler, R.;
- 921 Hofzumahaus, A.; Li, X.; Lutz, A.; Nehr, S.; Rohrer, F.; Tillmann, R.; Vereecken, L.;
- Wegener, R.; Wahner, A., Investigation of the beta-pinene photooxidation by OH in the
- atmosphere simulation chamber SAPHIR. Atmos. Chem. Phys. 2017, 17 (11), 6631-6650.
- 924 (74) Xu, L.; Møller, K. H.; Crounse, J. D.; Otkjær, R. V.; Kjaergaard, H. G.; Wennberg, P.
- 925 O., Unimolecular reactions of peroxy radicals formed in the oxidation of alpha-pinene and
- 926 beta-pinene by hydroxyl radicals. J. Phys. Chem. A **2019**, 123 (8), 1661-1674.
- 927 (75) Vereecken, L.; Peeters, J., Theoretical study of the formation of acetone in the OH-
- 928 initiated atmospheric oxidation of alpha-pinene. J. Phys. Chem. A. 2000, 104 (47), 11140-
- 929 11146.
- 930 (76) Peeters, J.; Vereecken, L.; Fantechi, G., The detailed mechanism of the OH-initiated
- atmospheric oxidation of alpha-pinene: a theoretical study. Phys. Chem. Chem. Phys. 2001,
- 932 3 (24), 5489-5504.
- 933 (77) Møller, K. H.; Otkjær, R. V.; Chen, J.; Kjaergaard, H. G., Double bonds are key to fast
- 934 unimolecular reactivity in first-generation monoterpene hydroxy peroxy radicals. J. Phys.
- 935 Chem. A **2020**, 124 (14), 2885-2896.
- 936 (78) Kurtén, T.; Møller, K. H.; Nguyen, T. B.; Schwantes, R. H.; Misztal, P. K.; Su, L. P.;
- 937 Wennberg, P. O.; Fry, J. L.; Kjaergaard, H. G., Alkoxy radical bond scissions explain the
- 938 anomalously low secondary organic aerosol and organonitrate yields from alpha-pinene +
- 939 NO₃. J. Phys. Chem. Lett. **2017**, 8 (13), 2826-2834.
- 940 (79) Fouqueau, A.; Cirtog, M.; Cazaunau, M.; Pangui, E.; Doussin, J. F.; Picquet-Varrault,
- 941 B., A comparative and experimental study of the reactivity with nitrate radical of two
- 942 terpenes: alpha-terpinene and gamma-terpinene. Atmos. Chem. Phys. 2020, 20 (23), 15167-
- 943 15189.
- 944 (80) Berndt, T.; Mender, B.; Scholz, W.; Fischer, L.; Herrmann, H.; Kulmala, M.; Hansel,
- 945 A., Accretion product formation from ozonolysis and OH radical reaction of alpha-pinene:
- mechanistic insight and the influence of isoprene and ethylene. *Environ. Sci. Technol.* **2018**,
- 947 *52* (19), 11069-11077.
- 948 (81) Berndt, T.; Scholz, W.; Mentler, B.; Fischer, L.; Herrmann, H.; Kulmala, M.; Hansel,
- 949 A., Accretion product formation from self- and cross-reactions of RO₂ radicals in the
- 950 atmosphere. Angew. Chem., Int. Ed. 2018, 57 (14), 3820-3824.
- 951 (82) Zhao, Y.; Thornton, J. A.; Pye, H. O. T., Quantitative constraints on autoxidation and
- 952 dimer formation from direct probing of monoterpene-derived peroxy radical chemistry.
- 953 *Proc. Natl. Acad. Sci. U.S.A.* **2018**, *115* (48), 12142-12147.
- 954 (83) Jokinen, T.; Berndt, T.; Makkonen, R.; Kerminen, V. M.; Junninen, H.; Paasonen, P.;
- 955 Stratmann, F.; Herrmann, H.; Guenther, A. B.; Worsnop, D. R.; Kulmala, M.; Ehn, M.;
- 956 Sipilä, M., Production of extremely low volatile organic compounds from biogenic
- 957 emissions: measured yields and atmospheric implications. Proc. Natl. Acad. Sci. U.S.A.
- 958 **2015**, *112* (23), 7123-7128.

- 959 (84) Wang, Y. H.; Riva, M.; Xie, H. B.; Heikkinen, L.; Schallhart, S.; Zha, Q. Z.; Yan, C.;
- He, X. C.; Peräkylä, O.; Ehn, M., Formation of highly oxygenated organic molecules from
- 961 chlorine-atom-initiated oxidation of alpha-pinene. Atmos. Chem. Phys. 2020, 20 (8), 5145-
- 962 5155.
- 963 (85) Liu, Y.; Nie, W.; Li, Y.; Ge, D.; Liu, C.; Xu, Z.; Chen, L.; Wang, T.; Wang, L.; Sun, P.;
- 964 Qi, X.; Wang, J.; Xu, Z.; Yuan, J.; Yan, C.; Zhang, Y.; Huang, D.; Wang, Z.; Donahue, N.
- 965 M.; Worsnop, D.; Chi, X.; Ehn, M.; Ding, A., Formation of condensable organic vapors
- 966 from anthropogenic and biogenic VOCs is strongly perturbed by NO_x in eastern China.
- 967 Atmos. Chem. Phys. 2021, 21, 14789-14814.
- 968 (86) Roldin, P.; Ehn, M.; Kurtén, T.; Olenius, T.; Rissanen, M. P.; Sarnela, N.; Elm, J.;
- 969 Rantala, P.; Hao, L. Q.; Hyttinen, N.; Heikkinen, L.; Worsnop, D. R.; Pichelstorfer, L.;
- 970 Xavier, C.; Clusius, P.; Öström, E.; Petäjä, T.; Kulmala, M.; Vehkamäki, H.; Virtanen, A.;
- 971 Riipinen, I.; Boy, M., The role of highly oxygenated organic molecules in the boreal
- aerosol-cloud-climate system. Nat. Commun. 2019, 10, 4370.
- 973 (87) Pye, H. O. T.; D'Ambro, E. L.; Lee, B.; Schobesberger, S.; Takeuchi, M.; Zhao, Y.;
- 974 Lopez-Hilfiker, F.; Liu, J. M.; Shilling, J. E.; Xing, J.; Mathur, R.; Middlebrook, A. M.;
- 975 Liao, J.; Welti, A.; Graus, M.; Warneke, C.; de Gouw, J. A.; Holloway, J. S.; Ryerson, T.
- 976 B.; Pollack, I. B.; Thornton, J. A., Anthropogenic enhancements to production of highly
- 977 oxygenated molecules from autoxidation. Proc. Natl. Acad. Sci. U.S.A. 2019, 116 (14),
- 978 6641-6646.
- 979 (88) Weber, J.; Archer-Nicholls, S.; Griffiths, P.; Berndt, T.; Jenkin, M.; Gordon, H.; Knote,
- 980 C.; Archibald, A. T., CRI-HOM: A novel chemical mechanism for simulating highly
- 981 oxygenated organic molecules (HOMs) in global chemistry-aerosol-climate models.
- 982 Atmos. Chem. Phys. **2020**, 20 (18), 10889-10910.