000903127 001__ 903127
000903127 005__ 20240712113037.0
000903127 0247_ $$2doi$$a10.1103/PhysRevE.104.034801
000903127 0247_ $$2ISSN$$a2470-0045
000903127 0247_ $$2ISSN$$a2470-0061
000903127 0247_ $$2ISSN$$a1063-651X
000903127 0247_ $$2ISSN$$a1095-3787
000903127 0247_ $$2ISSN$$a1538-4519
000903127 0247_ $$2ISSN$$a1539-3755
000903127 0247_ $$2ISSN$$a1550-2376
000903127 0247_ $$2ISSN$$a2470-0053
000903127 0247_ $$2Handle$$a2128/29286
000903127 0247_ $$2altmetric$$aaltmetric:96568427
000903127 0247_ $$2pmid$$apmid:34654097
000903127 0247_ $$2WOS$$aWOS:000693323900006
000903127 037__ $$aFZJ-2021-04851
000903127 041__ $$aEnglish
000903127 082__ $$a530
000903127 1001_ $$0P:(DE-Juel1)171909$$aZitz, S.$$b0$$eCorresponding author
000903127 245__ $$aLattice Boltzmann simulations of stochastic thin film dewetting
000903127 260__ $$aWoodbury, NY$$bInst.$$c2021
000903127 3367_ $$2DRIVER$$aarticle
000903127 3367_ $$2DataCite$$aOutput Types/Journal article
000903127 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1638450625_16994
000903127 3367_ $$2BibTeX$$aARTICLE
000903127 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000903127 3367_ $$00$$2EndNote$$aJournal Article
000903127 520__ $$aWe study numerically the effect of thermal fluctuations and of variable fluid-substrate interactions on the spon-taneous dewetting of thin liquid films. To this aim, we use a recently developed lattice Boltzmann method for thinliquid film flows, equipped with a properly devised stochastic term. While it is known that thermal fluctuationsyield shorter rupture times, we show that this is a general feature of hydrophilic substrates, irrespective of thecontact angle θ . The ratio between deterministic and stochastic rupture times, though, decreases with θ . Finally,we discuss the case of fluctuating thin film dewetting on chemically patterned substrates and its dependence onthe form of the wettability gradients.
000903127 536__ $$0G:(DE-HGF)POF4-1215$$a1215 - Simulations, Theory, Optics, and Analytics (STOA) (POF4-121)$$cPOF4-121$$fPOF IV$$x0
000903127 536__ $$0G:(GEPRIS)422916531$$aDFG project 422916531 - Adaptive und schaltbare Grenzflächen basierend auf strukturierten Kolloiden $$c422916531$$x1
000903127 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000903127 7001_ $$0P:(DE-Juel1)167572$$aScagliarini, A.$$b1
000903127 7001_ $$0P:(DE-Juel1)167472$$aHarting, J.$$b2
000903127 773__ $$0PERI:(DE-600)2844562-4$$a10.1103/PhysRevE.104.034801$$gVol. 104, no. 3, p. 034801$$n3$$p034801$$tPhysical review / E$$v104$$x2470-0045$$y2021
000903127 8564_ $$uhttps://juser.fz-juelich.de/record/903127/files/Lattice%20Boltzmann%20simulations%20of%20stochastic%20thin%20film%20dewetting.pdf$$yOpenAccess
000903127 909CO $$ooai:juser.fz-juelich.de:903127$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000903127 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171909$$aForschungszentrum Jülich$$b0$$kFZJ
000903127 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167472$$aForschungszentrum Jülich$$b2$$kFZJ
000903127 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1215$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
000903127 9141_ $$y2021
000903127 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-05-04
000903127 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000903127 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-05-04
000903127 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-05-04
000903127 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000903127 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV E : 2019$$d2021-05-04
000903127 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000903127 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-05-04
000903127 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-05-04
000903127 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000903127 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-05-04
000903127 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-05-04
000903127 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-05-04
000903127 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-05-04
000903127 920__ $$lyes
000903127 9201_ $$0I:(DE-Juel1)IEK-11-20140314$$kIEK-11$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0
000903127 9801_ $$aFullTexts
000903127 980__ $$ajournal
000903127 980__ $$aVDB
000903127 980__ $$aUNRESTRICTED
000903127 980__ $$aI:(DE-Juel1)IEK-11-20140314
000903127 981__ $$aI:(DE-Juel1)IET-2-20140314